Рефераты. История философии и науки

Во-первых, рациональную обработку данных наблюдения и поиск в них устойчивого, инвариантного содержания. Для формирования факта необходимо сравнить между собой множество наблюдений, выделить в них повторяющиеся признаки и устранить случайные возмущения и погрешности, связанные с ошибками наблюдателя. Если в процессе наблюдения производится измерение, то данные наблюдения записываются в виде чисел. Тогда для получения эмпирического факта требуется определенная статистическая обработка результатов измерения, поиск среднестатистических величин во множестве этих данных.

Во-вторых, для установления факта необходимо истолкование выявляемого в наблюдениях инвариантного содержания. В процессе такого истолкования широко используются ранее полученные теоретические знания.

Роль наблюдения и эксперимента в познании.

Наблюдение – один из важнейших методов. Наб - это преднамеренное, направленное восприятие, имеющее целью выявление существенных свойств и отношений объекта познания. Важнейшей особенностью наблюдения является его целенаправленный характер (+планомерность, + активность). Эта целенаправленность обусловлена наличием предварительных идей, гипотез, которые ставят задачи наблюдению. Научное наб в отличие от обычного созерцания всегда оплодотворено той или иной научной идеей, опосредуется уже имеющимся знанием, которое показывает, что наблюдать и как наблюдать. (непосредственное и аппосредованное наблюд).

Наб как метод эмпирического исследования всегда связано с описанием, которое закрепляет и передает результаты наблюдения с помощью определенных знаковых средств. С помощью описания чувственная информация переводится на язык понятий, знаков, схем, рисунков, графиков и цифр для дальнейшей обработки.

Часто исследование требует эксперимента. В отличие от обычного наблюдения в ходе эксперимента исследователь активно вмешивается в протекание изучаемого процесса с целью получить о нем определенные знания. С помощью эксперимента объект или воспроизводится искусственно, или ставится в заданные определенным образом и контролируемые условия, отвечающие целям исследования. В процессе научного познания применяется и мысленный эксперимент, когда ученый в уме оперирует определенными образами, мысленно ставит объект в определенные условия. Виды эксперимента: исследовательский или поисковый, проверочный или контрольный, воспроизводящий, изолирующий, качественный или количественный, подтверждающий, опровергающий или решающий.

Познавательная роль эксперимента велика не только в том отношении, что он дает ответы на ранее поставленные вопросы, но и в том, что в ходе его возникают новые проблемы, решение которых требует проведения новых опытов и создания новых экспериментальных установок. Т.о. экспериментальная деятельность обладает сложной структурой: теор. основы эксперимента - научные теории, гипотезы; матер. основа - приборы; непосредственное осуществление экспер.; эксперим наблюдение; колич и кач анализ рез-тов эксперимента, их теор. обобщение. Эксперимент одновременно принадлежит и к познавательной, и к практической деятельности людей, использует теор-е знания, являясь частью эмпирики.

Эксперимент есть непосредственное материальное воздействие на реальный объект или окружающие его условия, осуществляемое с целью познания этого объекта (более сложный метод).

В эксперименте выделяют следующие элементы: 1) цель эксперимента; 2) объект экспериментирования; 3) условия, в которых находится или в которые помещается объект; 4) средства эксперимента; 5) материальное воздействие на объект или условия его существования. Каждый из этих элементов может быть положен в основу классификации экспериментов. Например, эксперименты можно разделять на физические, химические, биологические и т.п. в зависимости от различия объектов экспериментирования. Одна из наиболее простых классификаций основывается на различиях в целях эксперимента.

Целью эксперимента может быть установление каких-либо закономерностей или обнаружение фактов. Эксперименты, производимые с такой целью, называются поисковыми. Результатом поискового эксперимента является новая информация об изучаемой области. Однако чаще эксперимент проводится с целью проверки некоторой гипотезы или теории. Такой эксперимент называется проверочным. Ясно, что нельзя провести резкую границу между этими двумя видами экспериментов. Один и тот же эксперимент может быть поставлен для проверки гипотезы и,  то же время, дать неожиданную информацию об изучаемых объектах. Точно так же и результат поискового эксперимента может заставить нас отказаться от принятой гипотезы или, напротив, даст эмпирическое обоснование нашим теоретическим рассуждениям. В современной науке один и тот же эксперимент все чаще обслуживает разные цели.

Следует подчеркнуть, что наблюдение, измерение и эксперимент, хотя и тесно связаны с теоретическими допущениями, являются разновидностями практической деятельности. Осуществляя рассмотренные эмпирические процедуры, мы выходим за рамки чисто логических рассуждений и обращаемся к материальному взаимодействию с реальными вещами. В конечном итоге только через посредство такого взаимодействия получают подтверждение или опровержение наши представления о действительности. В эмпирических познавательных процедурах наука вступает в непосредственный контакт с описываемой ею реальностью – именно в этом заключается громадное значение наблюдения, измерения и эксперимента для научного познания.

Особенности: позволяет изучать объект в «чистом виде», в «искусственных условиях», влияние на объект, воспроизводимость.

Измерение – это процесс, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явлений с помощью специальных технических устройств. Д.И. Менделеев подчеркивал, что «наука начинается с тех пор, как начинают измерять». Важная сторона – методика проведения. Это совокупность приемов, использующих определенные принципы и средства измерения (ПР: измерение температуры, используя термоэлектрический эффект). Наличие субъекта (исследователя) не обязательно. Результаты в виде некоторого числа единиц измерения. Единица измерения – эталон, с которым сравнивается измеряемая сторона объекта или явления (основные – базисные, производимые – выводимые с помощью математических соотношений).

Методика построения системы единиц как совокупности основных и производных впервые была предложена в 1832 г. К. Гауссом: длины – миллиметр, массы – миллиграмм, времени – секунда. В настоящее время в естествознании действует преимущественно Международная система единиц (СИ), принятая в 1960 г. Генеральной конференцией по мерам и весам (7 основных: метр, килограмм, секунда, ампер, кальдера, моль, кельвин; 2 доп: радиан, стерадиан). Существует несколько видов измерения. Исходя из характера зависимости измеряемой величины от времени: статистические и динамические. По способу получения результатов: непосредственные и косвенные (мат завис).

 Хорошо развитое измерительное приборостроение, разнообразие методов и высокие характеристики средств измерения способствуют прогрессу в научных исследованиях. В свою очередь, решение научных проблем часто открывает новые пути совершенствования самих измерений.

 9 Специфика теоретического познания. Проблема и гипотеза как форма теоретического познания.

Теоретический уровень – высший уровень н-го познания. Включает факты, добытые эмпирическим путём, предшествующие развитию н, а также логические выводы, добытые рассудком и разумом человека. Объект теоретического уровня – идеализированный, несуществующий в реальности.

Методы: 1) абстрагирование – процесс отвлечения и мысленного выделения каких-либо сторон и свойств предмета. При абс-ии отбрасывается всё то, что мешает целенаправленному исследованию. Абс-ми понятиями яв-ся: атом, элемент, цена. Абстракция – нечто неполное, одностороннее, но абстрактные понятия имеют огромное значение в н. Они позволяют изучить предмет «в чистом виде». Это всегда творческий процесс учёного. 2) идеализация – мысленное конструирование объекта, кот приписываются свойства, возможные лишь в «предельном чистом случае». Результаты идеализации – идеа-ные объекты, т.е. такие, которые в действительности не сущ. Эти объекты фиксируются в знаково-символических средствах, и они гораздо проще для изучения, чем реальные. Все законы науки носят идеализированный характер. Для реального воплощения надо иметь правила корректировки для конк условий. 3) аксиоматизация – в основе лежат аксиомы, т.е. утверждения, которые не требуют доказательств, и док-во которых невозможно. Акс-ция в н обозначает область знания, которая представляет единую дедуктивную систему, и содержание которой выведено из начальных аксиом. В настояще вр в качестве исходных аксиом могут быть избраны отдельные положения теории, из которой выводится всё остальное. 4) гипотетико-дедуктивный метод – основан на выведении (дедукции) заключений из гипотез, истинное значение которых неизвестно. Отсюда знание носит вероятностный характер.  Г-д метод включает соотношение между гипотезами и фактами. Это соотношение является противоречивым: 1)от фактов нет логического пути к правильной гипотезе; 2)от гипотез к фактам существует множество логических построений. Дело в том, что путь от фактов к выводу гипотез – путь обобщения. Сами факты такого обобщения не подсказывают. Считается, что этот метод – путь установления гипотез. Этот метод используется в экспериментальных н и опирается на эксперимент и логико-математические методы.

Что же касается тео-го познания, то в нем применяются иные исследовательские средства. Здесь отсутствуют средства материального, практического взаимодействия с изучаемым объектом. Но и язык теор-го исследования отличается от языка эмпирических описаний. В качестве его основы выступают теор-ие термины, смыслом кот явл теор-ие идеальные объекты. Их также называют идеализированными объектами, абстрактными объектами или теоретическими конструктами. Это особые абстракции, которые являются логическими реконструкциями действительности. Ни одна теория не строится без применения таких объектов.

Что касается тео-го исс-я, то здесь применяются особые методы: идеализация (метод построения идеа-ого объекта); мысленный эксперимент с идеализированными объектами, который как бы замещает реальный эксперимент с реальными объектами; особые методы построения теории (восхождение от абстрактного к конкретному, аксиоматический и гипотетико-дедуктивный методы); методы логического и исторического исследования и др.

Перейдем теперь к анализу теоретического уровня познания. Здесь тоже можно выделить (с определенной долей условности) два подуровня. Первый из них образует частные теоретические модели и законы, которые выступают в качестве теорий, относящихся к достаточно ограниченной области явлений. Второй - составляют развитые научные теории, включающие частные теоретические законы в качестве следствий, выводимых из фундаментальных законов теории. Примерами знаний 1го подуровня могут служить тео-ие модели и законы, характеризующие отдельные виды механического движения: модель и закон колебания маятника (законы Гюйгенса), движения планет вокруг Солнца (законы Кеплера), свободного падения тел (законы Галилея) и др. Они были получены до того, как была построена ньютоновская механика. Сама же эта теория, обобщившая все предшествующие ей теоретические знания об отдельных аспектах механического движения, выступает типичным примером развитых теорий, кот относятся ко 2му подуровню теоретических знаний.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.