Рефераты. Экономические аспекты глобальных проблем

- оценить доступную научную информацию по изменениям климата;

- оценить социально-экономические последст­вия климатических изменений и их воздействий на окружающую среду;

- сформулировать стратегию реагирования на эти изменения.

За истекшее десятилетие IPCC проделала большую работу по накоплению и анализу ин­формации и подготовила серию отчетов, содер­жащих рекомендации, уже послужившие основой для принятия ряда важнейших международных со­глашений ("Рамочная конвенция по изменениям климата", 1992 г., Рио-де-Жанейро; "Соглашения по ограничениям выбросов СО2", 1997 г., Япония).

В выпуске каждого отчета обычно участвова­ли один-два десятка ведущих авторов и около сотни соавторов из 10-15 стран (в этой работе также принимал участие один из авторов данной статьи). Кроме того, каждый отчет рецензиро­вался несколькими сотнями ведущих специалис­тов соответствующих областей знаний из не­скольких десятков стран. Таким образом, уни­кальные исследования IPCC достаточно полно отражают коллективное мнение специалистов и только они служат основой разработки соответ­ствующих межгосударственных соглашений по стабилизации климата.

К сожалению, эти исследования недостаточно хорошо известны в России.

В отечественной литературе экономические аспекты потепления климата практически не рассматривались, хотя, по мнению авторов, иметь некоторое представление о возможном воздейст­вии климатических изменений на экономику по­лезно всем специалистам, так или иначе связан­ным с данной проблематикой. Поэтому одной из основных целей данной статьи является ознаком­ление общественности с современным состояни­ем проблем, связанных с потеплением климата, именно на основе материалов IPCC.

ПРИЧИНЫ ИЗМЕНЕНИЯ КЛИМАТА

Общеизвестно, что радиационные процессы играют центральную роль в атмосферном тепло-энергообмене и, следовательно, в формировании климата Земли, так как "глобальные долговре­менные динамические процессы регулируются реальными притоками тепла, среди которых од­ним из главных является лучистый"[19]. Мало того, климат крайне чувствителен даже, казалось бы, незначительным изменениям в механизме радиа­ционных процессов. Так, по данным ряда исследо­ваний[20], уменьшение в прошлом солнечной энер­гии, приходящей на Землю, всего на ~1% (в силу ряда астрономических факторов) провоцировало ледниковые периоды. За происходящее же изме­нение климата ответственен, как уже отмеча­лось, "парниковый эффект". Парниковым эф­фектом называется повышение температуры по­верхности Земли (или иных планет) вследствие относительно хорошей прозрачности атмосферы по отношению к солнечному излучению и ее не­прозрачности по отношению к инфракрасному (ИК) излучению.

Интересно отметить, что механизм "парнико­вого эффекта" был описан еще в 1860 г. извест­ным английским физиком Тиндалом. В общих чертах он объясняется поглощением в атмосфере теплового ИК излучения, исходящего от земной поверхности (нагретой солнцем) с последующим его изотропным переизлучением в атмосфере, приводящем к возвращению части первоначаль­ного теплового излучения к поверхности. Эта до­бавка к солнечной энергии, падающей на земную поверхность, и вызывает ее дополнительный ра­зогрев[21]. (В среднем земная поверхность поглоща­ет 168 Вт/м2 солнечной энергии, а испускает 390 Вт/м2 тепловой, причем 324 Вт/м2 возвраща­ется обратно из-за парникового эффекта[22].) Без

парникового эффекта была бы вообще невоз­можна жизнь на Земле (по всяком случае в при­вычных формах), так как средняя глобальная температура тогда равнялась бы всего -20°С вме­сто наблюдающихся +15°С[23].

Важно также отметить, что в прошлом дейст­вительно наблюдались сильные корреляции меж­ду климатом и концентрацией СО2 в атмосфере[24]. На протяжении нескольких последних тысячеле­тий эта концентрация была довольно стабильной и составляла примерно 280 ppmv (280 молекул СО2 на 1 млн. молекул воздуха). Однако с начала интенсивного развития промышленности (при­мерно с середины прошлого столетия) эта кон­центрация начала экспоненциально расти и в на­стоящее время уже составляет около 360 ppmv. Только с 1980 по 1990 г. концентрация СО2 увели­чилась на 17 ppmv (с 337 до 354 ppmv)! Так же рез­ко возрастают концентрации и других парнико­вых газов, в первую очередь метана (за то же де­сятилетие с 1.57 до 1.72 ppmv)[25].

При сохранении таких темпов роста уже при­близительно через 30 лет следует ожидать кон­центрацию парниковых газов в атмосфере, экви­валентную удвоению концентрации СОз (при этом концентрация собственно СО2 будет равна примерно 450 ppmv)[26]. В прошлом при такой кон­центрации парниковых газов (средний Плиоцен, 3-5 млн. лет назад) климат существенно отличал­ся от настоящего: среднеглобальная температура была на 4-5°С выше, отсутствовало оледенение Антарктиды, уровень океана был выше на не­сколько метров и т.п. Установление такого кли­мата за короткий промежуток времени в несколь­ко десятилетий привело бы к глобальной клима­тической катастрофе. Поэтому неудивительно, что в течение ряда последних лет климатические проблемы активно обсуждаются как в научных кругах, так и на межправительственном уровне при активном содействии ООН.

В IPCC также рассматриваются некоторые прогнозы будущего роста концентрации углекис­лого газа в атмосфере, существенно зависящие от выбора стратегии развития промышленности, энергетики, транспорта и т.п. Согласно этим сце­нариям, к концу следующего столетия можно ожидать возрастание концентрации углекислого газа от ~450 ppmv до ~950 ppmv! Вышеуказанные прогнозы основаны на достаточно надежных в настоящее время теориях и моделях углеродного цикла и данных мониторинга СО2[27]. Как уже отме­чалось, ситуация обостряется вследствие возрас­тания антропогенного выброса и других парнико­вых газов - метана, фреонов и др.

Полезно также иметь в виду основные черты природного углеродного цикла (следить за угле­родом удобнее, чем за его соединениями типа уг­лекислого газа из-за химических превращений). Вообще говоря, в атмосфере содержится пример­но 750 гигатонн (Гт) углерода (здесь и далее вели­чины даны для периода 1980-1989 гг.), при этом обмен атмосферы с сушей (растительность, поч­ва) составляет около 60 Гт/год и с океаном около 90 Гт/год, то есть довольно интенсивен. Казалось бы, ежегодная антропогенная эмиссия, составля­ющая всего около 7.1 ± 1.1 Гт/год (5.5 ± 0.5 Гт/год только из-за сжигания угля и нефти и производст­ва цемента), при таком интенсивном обмене могла бы быть легко поглощена, например океаном (где уже содержится около 40000 Гт углерода). Од­нако - и это является установленным фактом - об­мен атмосфера - суша и атмосфера - океан весь­ма инерционен и соответствующие скорости аб­сорбции СОз могут меняться лишь довольно медленно (за столетия). Кроме того, в отличие от метана, озона и других газов, углекислый газ не вступает в химические атмосферные реакции, могущие эффективно выводить его из атмосфе­ры. Иначе говоря, природная "фабрика" по ути­лизации атмосферного углекислого газа не мо­жет быстро наращивать свои мощности, что и при­водит к накоплению углерода (СО2) в атмосфере (в указанный период в атмосфере ежегодно остава­лось около 3.2 Гт углерода). Поэтому, как показы­вают модели углеродного цикла[28], накопившийся в атмосфере "лишний" СО2 приведет к установлению концентрации углекислого газа на новом, бо­лее высоком уровне, причем снижающемся край­не медленно (в течение многих столетий), даже при полном прекращении антропогенной эмиссии. Значит, возможно воздействовать на ситуацию только на стадии накопления СО2, а снижения его установившейся концентрации можно будет до­биться только если срочно принять меры по огра­ничению выбросов в атмосферу.

Однако введение любых таких ограничений требует весьма существенных (а зачастую и весь­ма дорогостоящих) перестроек в экономике. Так, наиболее "безопасный" (но вообще говоря мало реальный) из сценариев, рассмотренных IPCC (1592 с), в котором установившаяся концентрация равна 350 ppmv, предполагает, что дальнейшее удовлетворение растущих энергетических по­требностей человечества будет происходить в ос­новном за счет ядерной энергетики (в развитых странах), а рост энергетических потребностей в развивающихся странах будет незначительным. Но такая перспектива не слишком реальна.

Возникает естественный вопрос: насколько опасны возможные изменения климата при том или ином сценарии развития глобальной эконо­мики и каков безопасный уровень установившей­ся концентрации СО2? Очевидно, только ответив на эти вопросы, можно обоснованно выбрать стратегию по предотвращению возможных нега­тивных последствий изменения климата. К сожа­лению, определенность существующих климати­ческих прогнозов оставляет желать лучшего. Так, имеющиеся оценки увеличения среднеглобальной температуры и повышения уровня океа­на при удвоении содержания СО2 в атмосфере дают разброс в 1.5-4.5°С и 30-140 см, соответ­ственно[29]. Иначе говоря, по одним оценкам кли­мат почти не изменится, а по другим - может про­изойти чуть ли не климатическая катастрофа.

В свою очередь неудовлетворительная надеж­ность климатических прогнозов обусловлена сложностью описания процессов переноса сол­нечной и тепловой энергии в атмосфере и моде­лирования обратных связей в системе атмосфе­ра-суша-океан. Так, поглощение солнечной и тепловой радиации в ИК области имеет очень сложную зависимость от энергии, так как опреде­ляется колебательно-вращательными ИК-спектрами поглощения молекул водяного пара, угле­кислого газа, озона и др. (при моделировании радиационных процессов требуется учесть не­сколько десятков мегабайт информации о не­скольких сотнях тысяч спектральных линий газов). Большие трудности представляет и моде­лирование переноса солнечной энергии в облачной атмосфере из-за весьма неоднородной структуры облаков. Недавно было установлено, что существующие радиационные блоки клима­тических моделей (программы, где вычисляются параметры атмосферного радиационного тепло­обмена) могут давать рассогласование в расчетах потоков атмосферной радиации в десятки про­центов, тогда как изменения в потоках при удвое­нии СО2 - всего порядка одного процента[30]. В ре­зультате чисто научная проблема моделирования атмосферных радиационных процессов сдержи­вает решение важнейших практических проблем, имеющих общечеловеческую значимость.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.