Рефераты. Статистика финансов предприятий

Ошибки аппроксимации и прогнозные значения для разных уравнений тренда

Вид уравнения тренда

Ошибка

x^ = a0 + a1* t

= 153427,51

x^^ = b0 + b1* t + b*t2

 9679,164

Вид уравнения тренда

Прогнозные значения

x^ = a0 +a1* t

x* = 221808,51

x^^ = b0 + b1* t + b*t2

x** = 1,9213572218

Вывод:

Из двух прогнозных значений более достоверным является x** = 1,9213572218 так как ошибка аппроксимации для него меньше.

Расчет параметров парной линейной регрессии

Для расчета параметров уравнения парной линейной регрессии y = a0+a1x составляется система нормальных уравнений:

 


na0 + a1Σx = Σy;

a0Σx + a1Σx2 = Σxy.


Решают с помощью метода определителей. В результате получаются следующие формулы для расчета параметров уравнения парной линейной регрессии:



Построим вспомогательную таблицу. Обозначать их параметры разными буквами. Поэтому заменим a0 на k0 и a1 на k1.

Рассчитаем соответствующие суммы и подставим Σx, Σy, Σx2, Σxy в формулы для расчета параметров парной линейной регрессии:


В результате расчетов получаем следующие значения параметров регрессии:


Параметры регрессии

k0 =

14004771,9

k1 =

63335,6


Ошибка аппроксимации



3692,48


y

7761508,3


yx

7638683,7

R2 =

0,98

R2 = 7638683,7 /7761508,3 = 0,98


Вывод: Ошибка аппроксимации равна 0,98 т.е. менее 10 % среднего значения y, равного 16438,71. Допустимо, если ошибка аппроксимации не превышает 10-15% от среднего значения результативного показателя. Индекс детерминации равен 0,98, то есть очень близок к 1. Значит, построенное уравнение регрессии является значимым, то есть описывает существенную зависимость между показателями.

Таблица 17. Вспомогательная таблица для расчета параметров уравнения парной линейной регрессии (y = k0 + k1*x )

Исходные данные

Вспомогательные расчеты

Расчет дисперсии фактических значений y

Расчет дисперсии расчетных значений yx

Расчет параметров

Расчет ошибки()

x

y

x2

xy

yx=k0+k1*x

(y - yx)2

137582

238493

18928806724

32812343926

8727848794

761711815727542

-854159

729587597281

8726756142

76156272768567100000

140668

309008

19787486224

43467537344

8923302579

796198142756026

-783644

614097918736

8922209927

79605829988952006000

144858

357579

20983840164

51798178782

9188678911

844252489004537

-735073

540332315329

9187586259

84411741266933100000

144040

884868

20747521600

127456386720

9136870358

834662308643545

-207784

43174190656

9135777706

83462434284310800000

136715

1357806

18690991225

185632447290

8672936795

751962821537946

265154

70306643716

8671844143

75200880831811600000

130572

1273415

17049047184

166272343380

8283865958

686013392330279

180763

32675262169

8282773306

68604333638254900000

108670

2778551

11809168900

301945137170

6896688771

475259981172841

1685899

2842255438201

6895596119

47549245832230500000

943105

7200320

127996862021

68905323943135

59746163534

356874379758234

6107068

37296279556624

59745070882

3569473494707150000000



Расчет прогноза результирующего показателя y по регрессии

Рассчитанные параметры уравнений тренда для определения прогнозного значения показателя x. Были получены следующие результаты.

Ошибки аппроксимации и прогнозные значения для разных уравнений тренда

Вид уравнения тренда

Ошибка

x= a0 + a1* t

1 =

153427,51

x = b0 + b1* t + b2*t2

=

9679,164

Прогноз по линейному тренду

x* =

221808,51

Прогноз по квадратическому тренду

x**=

1,9213572218


Вывод:

Что более достоверным для показателя x является прогнозное значение по квадратическому тренду x**= 1,9213572218, так как для него ошибка аппроксимации меньше. Именно его и подставляем его в уравнение регрессии. Подставляем это число вместо x в уравнение: y = 14004771,9+ 63335,6x, получаем y***= 14125107.

Вывод (заключительный): Были рассчитаны тремя способами три разных прогнозных значения показателя y. По линейному тренду: y* =8776528,6; по квадратическому тренду y** = 6565569,5 и по уравнению регрессии y***=14125107.

Наиболее достоверным представляется прогнозное значение 6565569,5, рассчитанное по уравнению квадратического тренда, так как для данного уравнения ошибка аппроксимации наименьшая.

В целом следует сделать вывод о том, что от способа расчета зависит результат прогноза и что для получения более достоверного результата необходимо рассматривать различные варианты возможных видов математических функций, используемых для построения уравнений тренда.


Заключение

Финансы предприятий различных форм собственности, являясь основой единой финансовой системы страны, обслуживают процесс создания и распределения общественного продукта и национального дохода.

От состояния финансов предприятий зависит обеспеченность централизованных денежных фондов финансовыми ресурсами. При этом активное использование финансов предприятий в процессе производства и реализации продукции не исключает участия в этом процессе бюджета, банковского кредита, страхования.

В условиях рыночной экономики на основе хозяйственной и финансовой независимости предприятия осуществляют свою деятельность на началах коммерческого расчета, целью которого является обязательное получение прибыли. Они самостоятельно распределяют выручку от реализации продукции, формируют и используют фонды производственного и социального назначения, изыскивают необходимые им средства для расширения производства продукции, используя кредитные ресурсы и возможности финансового рынка. Развитие предпринимательской деятельности способствует расширению самостоятельности предприятий, освобождению их от мелочной опеки со стороны государства и вместе с тем повышению ответственности за фактические результаты работы.

Список использованных источников

1                   Елисеева И.И., Юзбашев М.М. Общая теория статистики. М.: Финансы и статистика, 2006.

2                   Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики. М.: Финансы и статистика, 2009.

3                   Салин В.Н., Шпаковская Е.П.Социально-экономическая статистика. М.: Финансы и статистика, 2005

4                   Статистика/ Под ред. И.И. Елисеевой. М.: Финансы и статистика, 2010.

5                   Статистика / Под ред. В.Г.Ионина. М.: Инфра-М, 2007.

6                   Статистика финансов / Под ред. В.Н. Салина. М.: Финансы и статистика, 2010.

7                   Теория статистики / Под ред. Р.А. Шмойловой. М.: Финансы и статистика, 2009.

8                   Экономическая статистика / Под ред. Ю.Н. Иванова. М.: Инфра-М, 2006.

 


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.