Рефераты. Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном в...

 В столбце 2 табл. 12 приведено отношение интенсивности сенсибилизированной фосфоресценции после отжига Iот  к его значению до отжига Iнеот при заданной концентрации акцептора. Данные опыта свидетельствуют о максимальном росте интенсивности сенсибилизированной фосфоресценции после отжига при концентрации 5×10-3 М. Концентрации 10-3 и 5×10-4 М после отжига дают незначительное увеличение интенсивности.

В 3 и 4 столбцах таблицы указаны положения максимумов 0-0 полосы в спектре сенсибилизированной фосфоресценции аценафтена до (lmнеот)  и после (lmот) отжига.  При всех рассмотренных концентрациях после отжига максимум смещается в сторону коротких длин волн. В первом случае это смещение составляет 10 , в двух последующих – 5 . Если проследить изменение положения максимума по столбцам, при понижении концентрации акцептора, то очевидно аналогичное поведение системы. Уменьшение концентрации так же ведёт к коротковолновому смещению максимума.

В двух последних столбцах представлены значения времени затухания сенсибилизированной фосфоресценции неотожжённого - tТнеот и отожжённого - tТот образцов. Для каждого из рассмотренных случаев после отжига наблюдается более медленное затухание свечения.  При концентрации 5×10-3 М увеличение времени затухания после отжига происходит на величину  0.85 с и составляет наибольшее значение в данном опыте, при 10-3 М tТот увеличивается на 0.15 с по сравнению с tТнеот, при 5×10-4 М – на 0.1 с. Если проследить поведение системы относительно данного параметра при понижении концентрации акцептора, то можно увидеть подобные результаты: уменьшение концентрации акцептора ведёт к увеличению времени затухания сенсибилизированной фосфоресценции.

Таким образом, исследования спектральных и кинетических характеристик сенсибилизированной фосфоресценции неотожжённого и отожжённого образцов при различных концентрациях показали, что процесс низкотемпературного отжига и уменьшение концентрации акцептора  в растворе приводят к одинаковым результатам, а именно:

1)     увеличению интенсивности (для области, где наблюдается концентрационное тушение);

2)      коротковолновому смещению максимума 0-0 полосы;

3)     увеличению времени затухания.

С целью установления причин увеличения интенсивности сенсибилизированной фосфоресценции  примесных молекул в данных системах в результате отжига образца была определена относительная заселённость триплетного уровня молекул акцептора  до и после отжига. Результаты этих исследований представлены в табл. 13. Здесь же приведены результаты определения константы перехода молекул аценафтена из основного в триплетное состояние в различных растворителях.

Таблица 13.

Параметры, характеризующие молекулы аценафтена в условиях переноса возбуждения, донор – бензофенон, до и после отжига.

Растворитель

СБ, М

СА, М

, отн.ед.

kП, с-1

Iот/Iнеот

неотож.

отож.

неотож.

отож.

н.-октан

5×10-3

5×10-3

0.46

0.50

0.49

0.42

10

н.-гептан

5×10-2

5×10-2

0.38

0.32

0.29

0.21

2

н.-гексан

10-2

10-2

0.35

0.33

0.25

0.21

2

Относительная погрешность при определении  и составляла не более 10 %.

Как видно из таблицы, разница в значениях  и для отожжённого и неотожжённого образца не превышает ошибки измерения, тогда как интенсивность сенсибилизированной фосфоресценции в результате отжига увеличивается в несколько раз. С учётом формулы (40) можно сделать вывод, что увеличение интенсивности сенсибилизированной фосфоресценции  в результате отжига происходит не за счёт изменения  , а за счёт увеличения числа молекул акцептора NA, участвующих в излучении сенсибилизированной фосфоресценции.

Для того, чтобы выяснить, за счёт каких процессов происходит увеличение числа молекул акцептора, участвующих в излучении сенсибилизированной фосфоресценции, необходимо было также изучить влияние отжига на параметры фосфоресценции молекул донора в присутствие молекул акцептора в растворе. Результаты этих исследований приведены в следующем параграфе.


4.3 ВЛИЯНИЕ ОТЖИГА НА ПАРАМЕТРЫ ФОСФОРЕСЦЕНЦИИ ДОНОРА ЭНЕРГИИ

Как отмечалось в предыдущем параграфе, интенсивность фосфоресценции донора в присутствие молекул акцептора в растворе после отжига также возрастает.

 Для случая (рис. 21), когда акцептором энергии является нафталин, интенсивность фосфоресценции бензофенона возрастает в н.-октане для отожжённого образца в 4 раза в сравнении с неотожженным. Когда акцептором энергии является аценафтен, (рис. 22), интенсивность фосфоресценции бензофенона возрастает в 2 раза. В обоих случаях концентрация бензофенона была равна концентрации молекул акцептора и равна 5×10-3 М.

Увеличение интенсивности фосфоресценции молекул донора в присутствие молекул акцептора в результате отжига образца указывает на то, что отжиг снимает также тушение триплетных состояний молекул донора.

Следует заметить, что интенсивность фосфоресценции молекул донора в результате отжига образца увеличивается всегда в меньшее число раз, чем интенсивность сенсибилизированной фосфоресценции молекул акцептора. Одной из возможных причин этого может быть то, что на интенсивности  фосфоресценции донора сказывается только тушение их триплетных состояний, а на интенсивность сенсибилизированной фосфоресценции – как тушение триплетных молекул донора, так и тушение триплетных молекул акцептора.

С целью выяснения причин возрастания интенсивности фосфоресценции молекул донора была исследована кинетика затухания его фосфоресценции в присутствие молекул  акцептора для неотожжённого и отожжённого образцов, а так же кинетика  затухания его фосфоресценции в отсутствие молекул акцептора. Результаты представлены в табл. 14.

Таблица 14.

Время затухания фосфоресценции бензофенона при 77 К


в отсутствие аценафтена

в присутствии аценафтена до отжига

в присутствии аценафтена после отжига

, мс

6.1

3.9

5.0

, с-1

164

256

200

, с-1

0

92

36

I/I0

1

0.2

0.4


В качестве акцептора энергии использовался аценафтен, в качестве растворителя – н.-октан. Концентрация аценафтена в растворе равнялась концентрации бензофенона и составляла 5×10-3 М. Отжиг образца производился в течение 4 мин. при Т = 180 К.

Как видно из таблицы, при добавлении аценафтена в раствор бензофенона в н.-октане, время затухания фосфоресценции последнего уменьшается от 6.1 мс до 3.9 мс. Отжиг этого образца приводит к увеличению интенсивности фосфоресценции бензофенона в 2 раза (рис. 22), при этом время затухания увеличивается в 1.3 раза. Одновременное увеличение интенсивности и времени затухания фосфоресценции бензофенона может быть обусловлено только снятием тушения его триплетных состояний. Однако, это не может быть связано с уменьшением тушения триплетных молекул донора в результате переноса энергии на одиночные молекулы акцептора, участвующие  в излучении сенсибилизированной фосфоресценции, поскольку её интенсивность при этом также возрастает. На основании этого можно утверждать о наличии других каналов тушения триплетных молекул донора в присутствие молекул акцептора, кроме переноса энергии на одиночные молекулы акцептора, участвующие в излучении сенсибилизированной фосфоресценции. Эти каналы дезактивации энергии триплетного возбуждения молекул донора назовём дополнительными каналами тушения. С их учётом время затухания фосфоресценции донора можно представить в следующем виде:

.                                    (43)

Здесь - константа перехода молекул донора из триплетного состояния в основное в отсутствии молекул акцептора в растворе;

kT1 - константа перехода молекул донора из триплетного состояния в основное в результате передачи энергии молекулам акцептора, участвующих в излучении сенсибилизированной фосфоресценции;

kT2 - константа перехода молекул донора из триплетного состояния в основное в результате дополнительного тушения.

Отжиг раствора снимает дополнительное тушение. Однако, как отмечалось выше, увеличение интенсивности опережает изменение . Если бы изменение интенсивности было обусловлено только одним процессом, в результате которого также изменяется , то отношение интенсивностей до и после отжига не превышало бы отношение времен затухания [19]

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.