Рефераты. Разработка источников диффузионного легирования для производства кремниевых солнечных элементов

2.   Возможность плавной регулировки поверхностной концентрации примесей в широком диапазоне.

3.   Равномерность распределения диффузанта по поверхности пластины. Высокая равномерность обусловлена тем, что в процессе получения пленки не используется присущий известным способам диффузии перенос диффузанта с помощью газообразного потока. Неравномерность диффузанта может быть вызвана лишь недостаточной гомогенностью раствора и неоднородностью толщины наносимой пленки. Подбором соответствующего режима центрифугирования и пульверизации удается получить достаточно высокую равномерность толщины пленки по пластине.

4.   Малая длительность процесса и простота используемого оборудования.

В качестве диффузантов для диффузии фосфора может использоваться фосфорный ангидрид, для диффузии бора – борный ангидрид [8, 11, 14], также есть сведения, что при диффузии фосфора может быть использована ортофосфорная  кислота.

Для достижения заданного уровня легирования полупроводника примесью при диффузии из окисных пленок, полученных осаждением из пленкообразующих растворов, важно знать зависимость концентрации примеси в пленке от весового процентного содержания ангидрида диффузанта в пленке.

Экспериментальные исследования показали, что для некоторых веществ-диффузантов существует предельное значение их весового содержания в растворе, выше которого гомогенность раствора нарушается. С целью получения достаточной воспроизводимости процесса диффузии весовое содержание вещества-диффузанта должно быть взято ниже того предельного значения, которое приведет к насыщению раствора.

Далее будут приведены результаты исследований авторов [14] по диффузии бора и фосфора из стекловидных пленок, полученных нанесением из

раствора способом, изложенным выше.        

Было показано, что толщина наносимых пленок, содержащих B2O3, зависит от содержания в них борного ангидрида и скорости вращения центрифуги. Наблюдалось увеличение толщины пленки с увеличением содержания борного ангидрида, что, по-видимому, обусловлено ростом суммарной концентрации компонентов и вязкости пленкообразующего раствора.

Регулирование поверхностной концентрации примеси в широких пределах помимо изменения количества легирующего компонента в исходном пленкообразующем составе можно производить также с помощью состава окружающей среды, в которой проводится диффузия. Изменения поверхностной концентрации в процессе диффузии с использованием различных газов могут быть объяснены химической сущностью процесса восстановления окисла примеси. Эти окислы используются в качестве транспортирующих агентов и для осуществления легирования кремния элементарной примесью должны восстанавливаться на поверхности раздела SiO2 – Si.

Если R обозначить химическую примесь, а RO – его окисел, то процесс восстановления протекает по формуле 2RO + Si ⇄ SiO2 + 2R. Характер изменения свободной энергии этой реакции говорит о том, что прямая реакция диссоциации окисла 2RO ⇄ 2R + O2  при этом исключается. Одновременно с реакцией восстановления происходит также и окисление кремния по формуле Si + O2 ⇄ SiO2.

При увеличении концентрации кислорода третья реакция смещается вправо, уменьшая концентрацию кремния. Это в свою очередь вызывает затем сдвиг первой реакции влево и тем самым понижает концентрацию первоначальной примеси, использующейся в процессе диффузии. Если диффузионный процесс проводится в атмосфере кислорода, то, кроме того, по мере повышения в окружающей среде концентрации кислорода происходит формирование окисла на поверхности раздела легированного окисла и кремния и концентрация на поверхности еще более уменьшается.

Как показали исследования, с ростом содержания фосфорного ангидрида толщина пленки существенно увеличивается, что обусловлено повышением вязкости раствора. Пленки обладают прочным сцеплением с покрываемой поверхностью и легко травятся в слабом растворе плавиковой кислоты.

1.2. Технология диффузии примесей в кремний


Вы*бор подходящего источника диффузии зависит от метода проведения диффузии. К примеру,  любое соединение бора, также как и элементарный бор, может служить источником диффузии бора в зависимости от выбранного метода. Однако оптимальные результаты можно получить только при комплексном решении проблемы, включающем выбор источника, метода диффузии и соответствующего оборудования. Поэтому в связи с созданием или усовершенствованием источника диффузии целесообразно рассмотреть современные методы диффузии и основные рекомендуемые для них источники.

В настоящее время можно выделить два основных направления, в рамках которых группируются методы получения однородной и регулируемой  поверхностной концентрации с хорошей воспроизводимостью результатов:

-         нанесение диффузанта на пластины кремния в ходе диффузии; при этом разрабатываются методы регулирования количества соединения примеси в атмосфере, окружающей кремниевые пластины во время диффузии;

-         нанесение диффузанта на пластины кремния до диффузии; здесь основное внимание уделяется методам регулирования количества соединения примеси, наносимой на пластины перед диффузией, а также путям повышения степени однородности нанесенного слоя.

Первое направление отличается большим разнообразием путей транспортировки диффузанта к пластинам кремния, а также сложностью технологической оснастки и вспомогательных процессов. Наибольшего применения в электронной промышленности при производстве полупроводниковых приборов и микросхем получил метод открытой трубы в потоке газа-носителя..

Второе направление – нанесение диффузантов на полупроводниковые пластины перед высокотемпературной термообработкой. Оно требует несложного технологического оборудования. Диффузия проводится в открытой трубе, чаще всего на воздухе.

1.2.1. Диффузия в запаянной и откачанной кварцевой ампуле


При проведении диффузии в замкнутом объеме пластины кремния помещаются вместе с некоторым количеством примеси в ампулу из кварца, которая откачивается до 10−4 – 10−5 мм рт. ст. и отпаивается [16]. В некоторых случаях ампула заполняется перед отпайкой чистым инертным газом. Затем ампулу помещают в камерную силитовую печь, нагретую до температуры, при которой проводится диффузия. Вследствие возгонки легирующего элемента в ампуле создается давление паров примеси. Атомы легирующей примеси адсорбируются на поверхности кремниевой пластины и диффундируют в поверхностные слои полупроводника. При таком методе практически всегда соблюдаются условия, при которых количество атомов примеси в паровой фазе много больше количества атомов примеси, диффундирующих в кремний. Поверхностную концентрацию примеси можно менять в широких пределах, меняя концентрацию примеси в газовой фазе, т.е. давлением паров диффузанта, температуру диффузионного процесса и время диффузии.

В идеальном случае равновесная концентрация пропорциональна давлению пара диффузанта, и контроль давления пара является удобным средством управления поверхностной концентрацией примеси. Необходимо заметить, что равновесная поверхностная концентрация устанавливается не сразу, а в течение некоторого времени, иногда достаточно большого. Если равновесие на поверхности достигается за время, меньшее, чем время диффузии, то поверхностную концентрацию можно считать постоянной. При проведении процесса диффузии в закрытой ампуле такое условие в большинстве случаев соблюдается, поэтому распределение примеси описывается дополнительной функцией интеграла ошибок.

Иногда при диффузии в откачанной ампуле на поверхности кремниевой пластины может образовываться слой двуокиси кремния, который будет препятствовать диффузии атомов примеси в кремний.

При определенных условиях, например, в случае больших парциальных давлений, концентрация примеси может быть такой, что на поверхности пластины будет образовываться слой вещества в жидкой фазе, который может также препятствовать диффузии атомов примеси в полупроводник.

                                    а)                                     б)

Рис. 1.5. Схема установок для проведения процессов диффузии примесей в кремний в закрытом объеме: а – диффузия бора, б – диффузия фосфора.                       1 – силитовая высокотемпературная печь; 2 – кварцевая запаянная ампула; 3 – пластины кремния; 4 – лодочка с диффузантом; 5 – низкотемпературная печь.


На рис. 1.5 приведены схемы установки для проведения диффузии в кремний в закрытом объеме. Если в качестве диффузанта используют элемент, обладающий очень высоким давлением пара при температуре диффузии (например, фосфор), то используют замкнутую систему, представляющую собой откачанную ампулу с отростком. В отростке находится источник примеси, температура которого может регулироваться независимо от температуры пластин кремния (рис 1.5, б). Такая же ампула с отростком может быть использована в случае применения диффузанта с низким парциальным давлением при температуре диффузии, когда необходимо в широких пределах регулировать поверхностную концентрацию примеси на пластинах кремния.

При проведении диффузии в закрытом объеме следует учитывать зависимость давления паров диффузанта от температуры. Для некоторых примесей (фосфор, мышьяк, сурьма) при высокой температуре давление паров настолько сильно увеличивается, что ампула может разорваться.

Поверхностная концентрация примеси, полученная в системе запаянной ампулы, соответствует предельной растворимости примеси при температуре диффузии; поскольку источник бесконечен, его поверхность должна быть намного больше поверхности системы в состоянии равновесия. В этом случае, например, используется гранулированный источник примеси. Продолжительность диффузии также должна быть значительной, чтобы и поверхность подложки, и стенки ампулы находились в равновесии. Поэтому такая система больше подходит для формирования глубоких слоев, поверхностная концентрация которых не ниже максимальной растворимости примеси при температуре диффузии в кремнии.

Хотя этот метод и позволяет получить достаточно высокие значения поверхностной концентрации, тем не менее для получения заранее заданной величины, а также невысоких значений поверхностной концентрации он ненадежен, в частности, из-за взаимодействия диффузанта с материалом ампулы [9].

При диффузии в ампулах пригодны газообразные, жидкие и твердые источники примеси, например BF3 и B2O3, элементарный красный фосфор, P2O5, PCl3 или PH3, а также измельченный в порошок кремний или его диоксид, содержащие достаточное количество примеси [3].

Недостатки метода диффузии в замкнутом объеме заключаются в следующем:

1)   невозможность раздельного управления поверхностной концентрацией и температурой диффузии;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.