Рефераты. Разработка источников диффузионного легирования для производства кремниевых солнечных элементов

где D – диаметр шара.

Рис. 2.3. Пояснение к способу изготовления сферического шлифа.


Точность измерений описанным методом составляет примерно ± 3 % и определяется в основном тщательностью приготовления и окрашивания шлифа. От глубины приникновения шара в кремний точность в первом приближении не зависит, однако рекомендуется делать шлиф таким образом, чтобы внутренняя окружность имела малый (по сравнению с внешней) диаметр, т.е. шлиф должен быть неглубоким. Для повышения точности измерений обычно делают несколько (2 – 5) шлифов и результат усредняют [6].

Для установки ЕТМ 2.600.047 диаметр стального шара составляет 26,5 мм. Подставляя это значение в формулу (2.1) получим эмпирическую формулу пересчета глубины залегания p – n перехода от значения хорды L:

                       , [мкм]                             (2.2)

где L – длина хорды, [мкм].

3. РАЗРАБОТКА ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ИСТОЧНИКОВ ДИФФУЗИОННОГО ЛЕГИРОВАНИЯ КРЕМНИЯ БОРОМ И         ФОСФОРОМ И ИХ ИССЛЕДОВАНИЕ


В данном разделе будет проведено исследование нескольких поверхностных источников для диффузионного легирования кремния, также будет рассмотрен твердый планарный источник бора – нитрид бора. Кроме поверхностных источников на основе простых неорганических соединений  рассмотрен источник на основе легированного окисла.

Контроль параметров осуществлялся путем определения глубины залегания p – n перехода (xj) методом сферического шлифа. Методика измерений такова: на пластине кремния делается несколько лунок, после проявления на каждой из лунок измеряется длина хорды Li, после чего по формуле (2.2) производится пересчет на глубину залегания xji. Принятая глубина залегания xj определяется как усредненное значение от xji.

Диффузионный отжиг проводился в атмосфере воздуха при температурах ниже 1000°С. Это связано с тем, что при более низких температурах диффузии образуется меньше дефектов на полупроводниковой пластине кремния, соответственно увеличится время жизни неосновных носителей тока и, в конечном итоге, коэффициент полезного действия солнечного элемента.


3.1. Разработка и испытание поверхностного источника бора на основе спиртового раствора борной кислоты


Борная кислота (H3BO3) в безводном виде представляет собой безцветное кристаллическое вещество. Для приготовления раствора заданное количество порошка борной кислоты растворяется в этиловом спирте (C2H5OH), процентное содержание H3BO3 в приготовленном растворе составило 5 %.

Полупроводниковые пластины кремния до нанесения слоя диффузанта обезжиривались кипячением в изопропиловом спирте.

Нанесение раствора осуществлялось методом центрифугирования. На практике осуществление этого метода заключается в том, что на пластины кремния, закрепленные на центрифуге, пипеткой наносится раствор, содержащий диффузант. Скорость вращения центрифуги составляет             2750 об/мин. С помощью вращательного движения, сообщаемого пластине центрифугой, достигается большая равномерность получаемого слоя.

После нанесения раствора пластины кремния необходимо высушить, для чего их помещают на нагретую электрическую печь. Это осуществляется для удаления растворителя (в данном случае этилового спирта).

Далее следует диффузионный отжиг в диффузионной печи. Для исследований было взято четыре образца кремния n-типа (111) с ρ = 2 Ом∙см. Диффузионный отжиг проводился в диффузионной печи при температуре 950°С в течение заданного времени. После выдержки на поверхности пластин кремния образовывалась цветная пленка боросиликатного стекла, которая удалялась в слабом растворе плавиковой кислоты.

В табл. 3.1 приведены результаты по исследованию зависимости глубины залегания p – n перехода (xj)  от времени проведения диффузии.

Таблица 3.1.

Зависимость глубины залегания p – n перехода от времени проведения диффузии при использовании  5 % раствора борной кислоты

№ образца

Температура,°С

Время диффузии, мин

 Li, мкм

xji, мкм

Среднее значение xj, мкм

1

950

20

170

0,272

0,28

175

0,289

170

0,272

175

0,289

180

0,306


 

Продолжение таблицы 3.1.

№ образца

Температура,°С

Время диффузии, мин

 Li, мкм

xji, мкм

Среднее значение xj, мкм

2

950

40

240

0,543

0,55

240

0,543

245

0,566

240

0,543

245

0,566

3

60

295

0,820

0,80

290

0,793

290

0,793

295

0,820

290

0,793

4

80

315

0,936

0,96

320

0,966

320

0,966

320

0,966

320

0,966


Для окрашивания шлифа применялся состав на основе плавиковой кислоты с добавлением небольшого количества азотной кислоты. После окрашивания исследуемые образцы помещались под микроскоп (в данной работе использовался микроскоп ММУ 4) и определялась величина хорды. Как видно, на каждом образце было сделано по 5 шлифов, что дает представление о среднем значении глубины залегания p – n перехода. Принятое значение  xj является  средним арифметическим от значений xji.

Результаты, приведенные в таблице 3.1 можно представить в виде графика (рис. 3.1).

 

Рис. 3.1. Зависимость глубины залегания p – n перехода от времени дифффузии при использовании поверхностного источника на основе борной кислоты (Т=950°С).


Относительно применения в качестве поверхностного источника бора спиртового раствора борной кислоты следует сделать одно важное замечание. В результате экспериментов было установлено, что после проведения процесса диффузии на поверхности пластины могут образоваться пленки темного цвета, которые не удаляются в химических травителях, в том числе и на основе плавиковой кислоты. Эти пленки образуются из-за того, что процесс диффузии проводится в атмосфере воздуха, а не в окислительной среде.

Образования таких пленок можно избежать, применяя  разбавленный раствор борной кислоты. Результаты можно считать удовлетворительными, если после проведения процесса диффузии на поверхности полупроводниковой пластины кремния образуется цветная пленка, которая легко травится в водном растворе плавиковой кислоты.



3.2. Разработка и испытание поверхностного источника фосфора на основе спиртового раствора ортофосфорной кислоты


Для приготовления источника на основе спиртового раствора ортофосфорной кислоты растворы этилового спирта и кислоты смешивались в  отношении 1:1.

 Данный раствор наносился на полупроводниковые пластины кремния методом центрифугирования. После нанесения раствора пластины помещались на электропечь для удаления растворителя.

Далее проводился диффузионный отжиг при температуре 950°С. После проведения процесса диффузии на поверхности пластин кремния образовывалась цветная пленка фосфоросиликатного стекла. Опыт показал, что p – n переход в полупроводниковой пластине кремния при использовании данного источника примеси получится только в том случае, если после диффузии на поверхности пластин образуется цветная пленка.

Окрашивание после шлифовки лунок удобно проводить в смеси плавиковой и азотной кислот. При этом в раствор плавиковой кислоты необходимо добавить несколько капель разбавленной азотной кислоты. В результате на поверхности пластины кремния ободок у лунок потемнеет и можно под микроскопом легко определить хорду.

Для исследований источника были взяты четыре образца кремния p-типа с удельным сопротивлением ρ = 7 Ом∙см, ориентации (111). После нанесения источника описанным способом данные образцы выдерживались в диффузионной печи заданное время.

Далее в таблице 3.2 приводятся результаты по определннию глубины залегания p – n перехода.



 

 

Таблица 3.2.

Зависимость глубины залегания p – n перехода от времени проведения диффузии для источника на основе ортофосфорной кислоты

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.