|
Расчёт поверхности зуба колеса на прочность по контактным напряжениям
Расчёт проводим для колеса, как наиболее слабого элемента зацепления.
Запишем условие прочности:
σн ≤ [σн] ,
где σн – действующее напряжение при циклическом контактном воздействии;
[σн] – допускаемое контактное напряжение.
Значение допускаемого контактного напряжения [σн] определяется по формуле:
[σн]=(σно·kHL)/[kH] , (24)
где σно – предел контактной выносливости при базовом числе циклов нагружения (зависит от материала и термообработки);
σно=17·HRC+200=17·50+200=1050 МПа;
kHL – коэффициент долговечности;
kHL= ,
где NHO=4·106 – базовое число циклов нагружения (взято из конспекта лекций [2]).
NHE=60·c· n1·Lп , - число циклов за весь период эксплуатации;
где c=1 – число вхождений зуба в зацепление за один оборот;
NHE=60·140·23536,66=197,71·106 ;
kHL==0,522 , т.к. у нас термообработка поверхности зубьев - поверхностная закалка, то 1 ≤ kHL ≤ 1,8 и, следовательно, берём kHL=1.
[kH]=1,25 – коэффициент безопасности (выбирается в зависимости от вида термохимической обработки зубьев: поверхностная закалка).
Вычислим значение [σн] по формуле (24):
[σн]=·1=840·106 Па.
Значение σн вычислим по формуле:
σн=· , (25)
где α=340000 Н·м2 – вспомогательный коэффициент, который зависит от материала колеса и шестерни (сталь – сталь);
kД – коэффициент динамичности, отражающий неравномерность работы зубчатой передачи (зависит от скорости и точности передачи);
kК – коэффициент концентрации, отражающий неравномерность распределения напряжений по длине линии контакта;
kД ·kК =1,3 ;
Vк=1,35 – коэффициент, отражающий повышенную нагрузочную способность косозубых и шевронных колёс;
aw=100·10-3 м – межосевое расстояние;
iф=3,57 – передаточное число редуктора;
tk=25·10-3 м – ширина венца зубчатого колеса;
β=16˚15΄37˝ - угол наклона линии зуба;
M∑max=216 (Н·м) – максимальный суммарный момент.
Следовательно, σн по формуле (25) получится:
σн=·=831,54·106 Па.
Как видно из расчёта, условие прочности по контактным напряжениям выполняется: 831,54•106 < 840·106. Следовательно, вид термохимической обработки зубьев выбран верно.
Расчёт зубьев на прочность при переменном изгибе
Запишем условие прочности:
σF ≤ [σF] ,
где σF - действующее напряжение при переменном изгибе;
[σF] – допускаемое напряжение при переменном изгибе.
Значение [σF] определим по формуле:
[σF]=·kFL , (26)
где σ-1F = 700 МПа – предел выносливости материала при симметричном изгибе;
[kF]=1,75 – коэффициент безопасности (зависит от технологии изготовления зубчатого колеса: заготовка получается штамповкой);
kFL – коэффициент долговечности;
kFL= ,
где NFO=4·106 – базовое число циклов нагружения (взято из конспекта лекций [2]);
NFЕ = NHE =197,71·106 – число нагружений зуба колеса за весь срок службы передачи;
m=9, т.к. HB>350.
kFL==0,648.
Т.к. 1 ≤ kFL ≤ 1,63 ,то принимаем kFL = 1.
Вычислим значение [σF] по формуле (26):
[σF]=·1=400·106 Па.
Величину σF определим по формуле:
σF = ·YF , (27)
где M∑max=216 (Н·м) – максимальный суммарный момент;
kД ·kК =1,3 , где kК – коэффициент концентрации, kД – коэффициент динамичности;
m=1,25·10-3 м – нормальный модуль зубчатого зацепления;
tk=25·10-3 м – ширина венца зубчатого колеса;
β=16˚15΄37˝ - угол наклона линии зуба;
zk = z2 = 100 - число зубьев колеса;
Vк=1,35 – коэффициент формы зуба.
YF выбираем по эквивалентному числу зубьев zv, где zv===113.
Соответственно YF = 3,75.
Найдём величину σF по формуле (27):
σF = ==368,05 МПа.
Получили, что 368,05 МПа < 400 МПа , а это удовлетворяет условию σF ≤ [σF].
ЗАКЛЮЧЕНИЕ
По заданным геометрическим, весовым и эксплуатационным параметрам был выполнен синтез плоского рычажного механизма с одной степенью свободы, в результате которого были найдены размеры звеньев механизма и межопорные расстояния.
Был произведен кинематический анализ механизма, основанный на построении ряда последовательных положений звеньев механизма и соответствующих им планов скоростей, в результате которого были определены относительные линейные скорости характерных точек и относительные угловые скорости звеньев.
Далее был проведен силовой анализ механизма. С целью его упрощения были заменены все звенья и усилия эквивалентной с точки зрения нагруженности привода динамической моделью. На основе динамического анализа были определены составляющие момента движущих сил (Мдв), предназначенные для преодоления сил статистического сопротивления – статический момент (Мст), и динамического сопротивления – динамический момент (Мдин). При определении суммарного момента движущих сил (М∑) были учтены потери на трение (КПД механизма равен 68%).
На основе расчетного момента Мрасч (Мрасч=k1·k2·Мн=222,32 Н·м, где величина Мн – есть среднеинтегральное значение функции М∑(φ), К1 – коэффициент, отражающий повышенную частоту вращения быстроходного вала редуктора, К2 – коэффициент, отражающий влияние характера нагрузки) был выбран цилиндрический одноступенчатый мотор-редуктор МЦ-100 с максимальным крутящим моментом на выходном валу Т=230 Н·м передаточным числом i=3,57 и коническими радиальноупорными подшипниками №7308 на тихоходном валу, установленными враспор.
Для тихоходного вала редуктора, который выполнен из стали 40Х (термическая обработка – улучшение), в результате проектировочного расчёта на статическую прочность был определён диаметр вала (d=44 мм) в опасном сечении – под срединной плоскостью зубчатого колеса. По результатам проектировочного расчёта на прочность при смятии для соединения «вал – колесо» были выбраны две диаметрально расположенные призматические шпонки 12×8×28 со скруглёнными краями по ГОСТ 23360-78.
Далее был произведён проверочный расчёт вала на выносливость с учётом конструктивных и технологических факторов, а также форм циклов нормальных и касательных напряжений, в результате которого было установлено, что вал удовлетворяет условию усталостной прочности, т.к. значение фактического коэффициента запаса прочности n=5,95 больше, чем значение нормативного коэффициента [n]=2,5.
Проверочный расчёт зубчатой пары на прочность (в качестве материала колеса и шестерни была выбрана сталь 40Х с поверхностной закалкой рабочей поверхности зубьев) по контактным и изгибающим напряжениям подтвердил работоспособность зубчатой пары (действующее контактное напряжение σн примерно равно допускаемому напряжению [σн], действующее напряжение при переменном изгибе σF примерно равно допускаемому напряжению [σF]).
Следовательно, можно сказать, что спроектированный привод пресс-автомата удовлетворяет всем условиям работоспособности, рассмотренным в расчётно-пояснительной записке.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Порошин В.Б., Худяков А.В. Проектирование привода механического оборудования. : Учебное пособие по курсовому пректированию – Челябинск: ЮУрГУ, 1997 – 38с.
2. Порошин В.Б., Ребяков Ю.Н., Деккер В.В. Конспект лекций по прикладной механике. – Челябинск: ЮУрГУ, 2003. – 210 с. (На правах рукописи).
3. Анфимов М.И. Редукторы. Конструкции и их расчёт. : Альбом. – М.: Машиностроение, 1993 – 464с.
4. Перель Л.Я. Подшипники качения: Расчёт, проектирование и обслуживание опор: Справочник. – М. : Машиностроение, 1983. – 543с.
5. Иосилевич Г.Б., Лебедев П.А., Стреляев В.С. Прикладная механика. – М. : Машиностроение, 1985. -576с.
6. Гузенков П.Г. Детали машин: учебное пособие для втузов – М. : 1982. – 351с.
ЗАКЛЮЧЕНИЕ
По заданным геометрическим, весовым и эксплуатационным параметрам был спроектирован привод пресс-автомата с плавающим ползуном.
Было выполнено следующее:
- выполнен синтез плоского рычажного механизма с одной степенью свободы, в результате которого были найдены размеры звеньев механизма и межопорные расстояния.
- произведен кинематический анализ механизма, основанный на построении ряда последовательных положений звеньев механизма и соответствующих им планов скоростей, в результате которого были определены относительные линейные скорости характерных точек и относительные угловые скорости звеньев.
- проведен силовой анализ механизма. С целью его упрощения были заменены все звенья и усилия эквивалентной с точки зрения нагруженности привода динамической моделью. На основе динамического анализа были определены составляющие момента движущих сил (Мдв), предназначенные для преодоления сил статистического сопротивления – статический момент (Мст), и динамического сопротивления – динамический момент (Мдин). При определении суммарного момента движущих сил (М∑) были учтены потери на трение (КПД механизма равен 68%).
- На основе расчетного момента Мрасч (Мрасч=k1·k2·Мн=222,32 Н·м, где величина Мн – есть среднеинтегральное значение функции М∑(φ), К1 – коэффициент, отражающий повышенную частоту вращения быстроходного вала редуктора, К2 – коэффициент, отражающий влияние характера нагрузки) был выбран цилиндрический одноступенчатый мотор-редуктор МЦ-100 с максимальным крутящим моментом на выходном валу Т=230 Н·м передаточным числом i=3,57 и коническими радиальноупорными подшипниками №7308 на тихоходном валу, установленными враспор.
- произведён проектировочный расчёт тихоходного вала редуктора, который выполнен из стали 40Х (термическая обработка – улучшение), на статическую прочность, в результате был определён диаметр вала (d=44 мм) в опасном сечении – под срединной плоскостью зубчатого колеса.
- по результатам проектировочного расчёта на прочность при смятии для соединения «вал – колесо» были выбраны две диаметрально расположенные призматические шпонки12×8×28 со скруглёнными краями по ГОСТ 23360-78.
- произведён проверочный расчёт вала на выносливость с учётом конструктивных и технологических факторов, а также форм циклов нормальных и касательных напряжений, в результате которого было установлено, что вал удовлетворяет условию усталостной прочности, т.к. значение фактического коэффициента запаса прочности n=5,95 больше, чем значение нормативного коэффициента [n]=2,5.
Проверочный расчёт зубчатой пары на прочность (в качестве материала колеса и шестерни была выбрана сталь 40Х с поверхностной закалкой рабочей поверхности зубьев) по контактным и изгибающим напряжениям подтвердил работоспособность зубчатой пары (действующее контактное напряжение σн примерно равно допускаемому напряжению [σн] (831,54•106 < 840·106), действующее напряжение при переменном изгибе σF примерно равно допускаемому напряжению [σF] (368,05 МПа < 400 МПа)).
Следовательно, можно сказать, что спроектированный привод пресс-автомата удовлетворяет всем условиям работоспособности, рассмотренным в расчётно-пояснительной записке.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8
При использовании материалов активная ссылка на источник обязательна.