Рефераты. Проектирование привода пресс-автомата с плавающим ползуном

Определим линейные скорости точек А, В2, В4, С, Е и угловые скорости звеньев: второго звена (шатун 2)ω2 и пятого (кулиса 5) ω5.

Из полюса P3, перпендикулярно отрезку О1А откладываем в выбранном масштабе вектор VА линейной скорости точки А, для этого воспользуемся формулой

lvi =V/μv ,         (1)

где V – скорость точки (м/с), μv – масштаб вектора скорости ((м/с)/мм).

V=μv*lvi        

На плане скоростей вектору VА соответствует вектор а. Величина вектора VА будет одинакова для всех положений механизма и равна:

VА=ω1*l1=1рад*0,05м=0,05 (м/с).

На плане скоростей из полюса P3 отложим вектор а длиной:

а=VА/μv=0,05/0,0007=71,5 мм.

Далее для определения скорости точки С воспользуемся векторным равенством:

VС=VА+VСА ,   (2)

где VС – абсолютная скорость точки С, вектор, который перпендикулярен кулисе 5, VА– линейная скорость точки А (известная и по величине и по направлению), VСА – вектор скорости точки С, принадлежащей кулисе 5, в относительном вращательном движении шатуна 2 вокруг полюса А.Вектор скорости VСА перпендикулярен отрезку СА. Для построения вектора VС, которому на плане скоростей соответствует вектор с, через конец вектора а проведём прямую, перпендикулярную отрезку АС, на ней будет расположен вектор VСА, которому на плане скоростей соответствует вектор са. Далее из полюса P3 проводим прямую, параллельную вектору скорости точки С (перпендикулярно О2С). Пересечение этих двух прямых задаст оба искомых вектора, модули которых будут равняться:

VС=μv*с=0,0007*67=0,0469 (м/с) ,       VСА =μv*са=0,0007*43=0,0301 (м/с).

Теперь зная скорость VСА, можно найти угловую скорость звена АС (шатуна 2):

ω2= VСА/l2=0,0301/0,6=0,05 (рад/с).

Зная ω2, найдём скорость точки В2 с помощью выражения

VB2=VА+VB2А ,   (3)

где VB2 – абсолютная скорость точки В2, VА – линейная скорость точки А, VB – скорость точки В2 в относительном движении.

Вектор скорости VBперпендикулярен отрезку АС. Так как направление вектора

VB перпендикулярно отрезку АС, а его модуль равен VB=ω2*lАВ=0,05*0,3=0,015

(м/с), то необходимо из конца вектора а на плане скоростей отложить отрезок длиной b2a=VB/μv=0,015/0,0007=21,4 (мм) (вектору VBна плане скоростей соответствует вектор b2a) и соединить его конец с полюсом P3. Полученный вектор b2 является вектором скорости точки В2 - VB2, модуль которого равен:

VB2=μv*b2=0,0007*65=0,0455 (м/с).

Скорость точки Е можно определить по принадлежности кулисе 5, которая совершает возвратно-вращательное движение:

VЕ=ω5*lО2Е ,   (4)

Угловую скорость кулисы 5 найдём из выражения:

ω5=VС/lО2С=0,0469/0,21=0,22 (рад/с) ,

следовательно, VЕ=0,22*0,105=0,0234 (м/с). На плане скоростей вектору VЕ будет соответствовать вектор е, длина которого равна: е=VЕ/μv=0,0234/0,0007=33,45 (мм). Вектор е сонаправлен с вектором с.

Для определения скорости точки В4 воспользуемся векторным уравнением:

VB4=VB2+VB4B2 ,   (5)

где VB4 – абсолютная скорость точки В4 (векторы скоростей всех точек , принадлежащих пуансону 4, совпадают, так как это звено совершает поступательное движение), VB2 – скорость точки В2 (полюса), VB4B2 – скорость точки В4 в поступательном движении относительно точки В2.

В соответствии с данным уравнением через конец вектора b2 проведём параллельно направляющей В2В4 вертикальную прямую, а из полюса P3 – горизонтальную, параллельно штанге. Пересечение этих прямых задаёт векторы абсолютной b4 (VB4) и относительной b4b2 (VB4B2) скоростей.

Значение скоростей равны: VB4=μv*b4=0,0007*63=0,0441 (м/с) ,

VB4B2= μv* b4b2=0,0007*14=0,01 (м/с).

Аналогично построим планы скоростей для всех остальных положений механизма 1…12 (Рисунок 4…9). Все найденные значения относительных угловых и относительных линейных скоростей представлены в Таблице 2. Изменение относительных линейных и угловых скоростей представлены в виде графиков на Рисунках 10, 11.


Таблица 2.

Значения кинематических передаточных функций механизма в зависимости от угла поворота кривошипа.


№ положения

1

2

3

4

5

6

7

8

9

10

11

12

1

φ, рад

0

π/6

π/3

π/2

2π/3

5π/6

π

7π/6

4π/3

3π/2

9π/3

11π/6

/ω1, м

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,05

0,05

VB2/ω1, м

0,025

0,032

0,046

0,05

0,043

0,031

0,025

0,037

0,045

0,05

0,046

0,036

0,025

/ω1, м

0

0,024

0,047

0,05

0,041

0,022

0

0,027

0,041

0,05

0,044

0,028

0

/ω1, м

0

0,012

0,023

0,025

0,02

0,011

0

0,014

0,021

0,025

0,022

0,014

0

VB4/ω1, м

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.