Рефераты. Проектирование привода ленточного питателя

А = d;    А = 6 мм


7.4.         Принимаем расстояние между наружным кольцом подшипника ведущего вала и внутренней стенкой корпуса:

 

А = d;    А = 6 мм


7.5.         Наружный диаметр подшипников D = 47 мм больше диаметра окружности вершин зубьев dа1 = 37,3 мм.

7.6.         Толщина фланца D крышки подшипника


равна диаметру отверстия do в этом фланце. Для подшипника 204 - D = 8 мм, для подшипника 207 - D = 12 мм по рис. 12.7 [1, стр. 303]. Высота головки болта

0,7 · dБ1 = 0,7 · 8 = 5,6 мм.

0,7 · dБ2 = 0,7 ·12 = 8,4 мм.


7.7.         Измерим по схеме расстояния l1 – на ведущем валу и l2 – на ведомом.


l1 = 36,5 мм, l2 = 48 мм

Окончательно принимаем для расчета: l1 = 36 мм, l2 = 48 мм.


7.8.         Глубина гнезда подшипника: lг ≈ 1,5 В;


для подшипника 204, В = 14 мм; lг1 = 1,5 * 14 = 21; примем  lг1 = 21 мм;

для подшипника 207, В =  17 мм; lг2 = 1,5 * 17 = 25,5; примем  lг2 = 25 мм;


7.9.         Решаем вопрос о смазывании подшипников.


Принимаем для подшипников пластичный смазочный материал. Для предотвращения вытекания смазки внутрь корпуса и вымывания пластичного смазочного материала жидким маслом из зоны зацепления устанавливаем мазеудерживающие кольца. Их ширина определяет размер y = 6 мм.

8.                Проверка долговечности подшипников

 

8.1.         Ведущий вал.


Из предыдущих расчетов имеем Ft = 1396,5 Н, Fа = 407,3 Н, Fr = 529,5 Н; Из первого этапа компоновки l1 = l2 = 46,5 мм.

Реакции опор:

в плоскости xz

Rx1 = Rx2 = Ft  / 2 = 1396,5 / 2 = 698,25 H

в плоскости yz

 Ry1 + Ry2 - Fr = 337 + 162,5 - 529,5 = 0

Суммарные реакции

Подбираем подшипники по более нагруженной опоре 1.


8.2.         Определим изгибающие и крутящий моменты и построим эпюры


Для построения эпюр определим изгибающие моменты в характерных точках (сечениях) А, В, С и Д.

а. Вертикальная плоскость

МА = 0

МСЛ = Ry1 · a2

МСЛ = 337 · 46,5 · 10-3 = 15,67 Н·м

МСП = Ry2 · a2

МСП = 192,5 · 46,5 · 10-3 = 9 Н·м

МВ = 0

МД = 0

б. Горизонтальная плоскость

МА = 0

МСЛ = Rх1 · a2

МДЛ = 698,25 · 46,5 · 10-3 = 32,5 Н·м

МДП = Rх2 · a2

МДП = 698,25 · 46,5 · 10-3 = 32,5 Н·м

МВ = 0

МД = 0

Крутящий момент:

Т = Т = 24 Н·м


8.3.         Суммарный изгибающий момент:


               (8.3)

Определим суммарные изгибающие моменты в характерных сечениях

Сечение А – А:             МИ = 0

Сечение С – С:              Н·м

Сечение В – В:              МИ = 0

Сечение Д – Д:             МИ = 0

8.4.         Намечаем радиальные шариковые подшипники 204: d = 20 мм, D = 47 мм, B = 14 мм, C = 12,7 кН, С0 = 6,2 кН.


Эквивалентная нагрузка:

РЭ = (Х · V · Pr1 + Y · Pa) · Ks · KТ             (8.4)

где Pr1 = 775 H – радиальная нагрузка, 

Pa – осевая нагрузка, Pa = Fa = 407,3 Н;

V = 1, вращается внутренне кольцо подшипника;

Ks = 1 – коэффициент безопасности для приводов ленточного конвейера, по таб. 9.19 [1, стр.214];

KТ = 1 – температурный коэффициент по таб. 9.20 [1, стр.214], так как рабочая температура не выше 100 0С                     

Отношение Fa / C0 = 407,3 / 6200 = 0,066 по таб. 9.18 [1, стр. 212] определяем е ≈ 0,26. Отношение Pa / Pr1 = 407,3 / 785 = 0,52 > е;  

Значит, по таб. 9.18 [1, стр. 212]: Х = 1; Y = 0

РЭ = 1 · 1 · 775 · 1 · 1 = 785 Н

Расчетная долговечность:

                                                  (8.5)

                                               (8.6)

Срок службы привода LГ = 6 лет, тогда:

Lh = LГ · 365 · 12                                             (8.7)

Lh =  6 · 365 · 12 = 26280 ч = 26 · 103 ч

Расчетная долговечность намного больше, следовательно, подшипник 204 подходит.

Окончательно принимаем подшипник легкой серии 204 d = 20 мм ГОСТ 8338 – 75


8.5.         Ведомый вал несет такие же нагрузки, как и ведущий: Ft = 1396,5 Н, Fа = 407,3 Н, Fr = 529,5 Н; l1= l2 =  48 мм.


Реакции опор:

в плоскости xz

Rx1 = Rx2 = Ft  / 2 = 1396,5 / 2 = 698,25 H

в плоскости yz


Ry1 + Ry2 - Fr = 406,5 + 123 - 529,5 = 0


8.6.         Суммарные реакции


Подбираем подшипники по более нагруженной опоре 1.

8.7.         Определим изгибающие и крутящий моменты и построим эпюры


Для построения эпюр определим изгибающие моменты в характерных точках (сечениях) А, В, С и Д.

а. Вертикальная плоскость

МА = 0

МСЛ = Ry1 · a2

МСЛ = 406,5 · 48 · 10-3 = 19,5 Н·м

МСП = Ry2 · a2

МСП = 123 · 48 · 10-3 = 6 Н·м

МВ = 0

МД = 0

б. Горизонтальная плоскость

МА = 0

МСЛ = Rх1 · a2

МДЛ = 698,25 · 48 · 10-3 = 33,5 Н·м

МДП = Rх2 · a2

МДП = 698,25 · 48 · 10-3 = 33,5 Н·м

МВ = 0

МД = 0

Крутящий момент:

Т = Т2 = 116,4 Н·м


8.8.         Суммарный изгибающий момент:


              (8.3)

Определим суммарные изгибающие моменты в характерных сечениях

Сечение А – А:             МИ = 0

Сечение С – С:              Н·м

Сечение В – В:              МИ = 0

Сечение Д – Д:               МИ = 0


8.9.         Намечаем радиальные шариковые подшипники 207: d = 35 мм, D = 72 мм, B = 17 мм, C = 25,5 кН, С0 = 13,7 кН.


Эквивалентная нагрузка:

РЭ = (Х · V · Pr1 + Y · Pa) · Ks · KТ              (8.4)

где Pr1 = 808 H – радиальная нагрузка, 

Pa – осевая нагрузка, Pa = Fa = 407,3 Н;

V = 1, вращается внутренне кольцо подшипника;

Ks = 1 – коэффициент безопасности для приводов ленточного конвейера, по таб. 9.19 [1, стр.214];

KТ = 1 – температурный коэффициент по таб. 9.20 [1, стр.214], так как рабочая температура не выше 100 0С

Отношение Fa / C0 = 407,3 / 13700 = 0,0297 по таб. 9.18 [1, стр. 212] определяем е ≈ 0,22. Отношение Pa / Pr1 = 407,3 / 808 = 0,5 > е; 

Значит, по таб. 9.18 [1, стр. 212]: Х = 1; Y = 0

РЭ = 1 · 1 · 785 · 1 · 1 = 808 Н

Расчетная долговечность:

            (8.5)

             (8.6)

Срок службы привода LГ = 6 лет, тогда:

Lh = LГ · 365 · 12           (8.7)

Lh =  6 · 365 · 12 = 26280 ч = 26 · 103 ч

Расчетная долговечность намного больше, следовательно, подшипник 207 подходит.

Окончательно принимаем подшипник легкой серии 207 d = 35 мм ГОСТ 8338 - 75


Условное обозначение подшипника

d

D

B

r

Грузоподъемность, кН

Размеры, мм

С

С0

204

20

47

14

1,5

12,7

6,2

207

35

72

17

2

25,5

13,7


9.                Расчет шпоночных соединений

 

9.1.         Подбор шпонок для быстроходного вала


Для консольной части вала по таб. 8.9 [1, стр. 169] подбираем по диаметру вала dВ1 = 16 мм призматическую шпонку b ´ h = 5 ´ 5 мм. Длину шпонки принимаем из ряда стандартных длин так, чтобы она была меньше длины посадочного места вала lМ1 = 18 мм на 3…10 мм и находилась в границах предельных размеров длин шпонок.

Принимаем l = 14 мм – длина шпонки со скругленными торцами. t1 = 3; момент на ведущем валу Т1 = 24 * 103мм;

Допускаемые напряжения смятия определим в предположении посадки  шкива ременной передачи изготовленного из чугуна, для которого [sсм] = 60…90 МПа. Вычисляем расчетное напряжение смятия:

                (9.2)

Окончательно принимаем шпонку 5 ´ 5 ´ 14


Обозначение: Шпонка 5 ´ 5 ´ 14  ГОСТ 23360 - 78


9.2.         Подбор шпонок для консольной части тихоходного вала


Для консольной части вала по таб. 8.9 [1, стр. 169] подбираем по диаметру вала dВ1 = 28 мм призматическую шпонку b ´ h = 8 ´ 7 мм. Длину шпонки принимаем из ряда стандартных длин так, чтобы она была меньше длины посадочного места вала lМ2 = 26 мм на 3…10 мм и находилась в границах предельных размеров длин шпонок.

Принимаем l = 20 мм – длина шпонки со скругленными торцами; t1 = 4; момент на ведомом валу Т1 = 116,4 * 103мм;

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.