Рефераты. Анализ погрешностей спутниковой радионавигационной системы, работающей в дифференциальном режиме

Содержание и расположение информации для ионосферной коррекции GPS приведено в таблице 2.6.

Таблица 2.6 - Информация по параметрам для ионосферной коррекции

Расположение информации: слово, разряды

Символьное обозначение

Содержание информации

Цена деления младшего разряда

Единицы измерений

Подкадр 4, строка 18

1

Слово 3

Разряды 9-16

б0

Коэффициенты позволяют потребителю применить модель ионосферы для расчета ионосферной задержки. У всех коэффициентов старший разряд является знаковым (+ или -)

2-30

Секунда/ полуцикл

2

Слово 3

Разряды 17-24

б1

2-27

Секунда/ полуцикл

3

Слово 4

Разряды 1-8

б 2

2-24

Секунда/ (полуцикл)2

4

Слово 4

Разряды 9-16

б 3

2-24

Секунда/ (полуцикл)3

5

Слово 4

Разряды 17-24

в 0

211

Секунда

214

Секунда/ (полуцикл)

6

Слово 5

Разряды 1-8

в 1

216

Секунда/ (полуцикл)2

7

Слово 5

Разряды 9-16

в 2

216

Секунда/ (полуцикл)3

8

Слово 5

Разряды 17-24

в 3

2.4 Аппаратура потребителя

К числу потребителей СРНС второго поколения относятся наземные объекты (подвижные и неподвижные), летательные аппараты (высокодинамичные и низкодинамичные) и др. В зависимости от типа потребителя требования к точностным характеристикам, числу измеряемых координат и составляющих скорости, допустимому времени вхождения в синхронизм, массогабаритным показателям и стоимости аппаратуры потребителя колеблются в широких пределах. Для наземных и морских объектов достаточно ограничиться измерением двух координат и двух составляющих скорости. Для летательных аппаратов число измеряемых координат и составляющих скорости возрастает до трех. Поэтому номенклатура модификаций бортовой аппаратуры весьма обширна.

Основными задачами, решаемыми аппаратурой потребителя, являются: выбор рабочего созвездия ИСЗ, поиск и опознавание навигационных сигналов ИСЗ, введение в синхронизм систем слежения по времени запаздывания и фазе несущей частоты дальномерных сигналов, измерение времени запаздывания и доплеровского сдвига частоты, выделение и расшифровка содержания навигационного (информационного) сообщения, расчет координат ИСЗ на момент навигационных измерений, решение навигационной задачи (определение координат и составляющих вектора скорости потребителя, поправок к сдвигу шкал времени и частот), отображение вычисленных данных на информационном табло.

На вход аппаратуры потребителя поступают сигналы от навигационных спутников, находящихся в зоне радиовидимости. Так как для решения навигационной задачи необходимо измерить псевдодальности и псевдоскорости относительно, как минимум, четырех ИСЗ, то АП должна быть многоканальной (от 4 до 12 каналов при работе по одной из систем и более 12 при совмещенной работе по системам ГЛОНАСС и NAVSTAR).

Современные АП являются аналого-цифровыми системами, сочетающими аналоговую и цифровую обработку сигналов. Переход на цифровую обработку осуществляется на одной из промежуточных частот. Основой типового варианта АП являются антенный блок, радиочастотный тракт, коррелятор и вычислительное устройство, представленные на рис. 2.3.

В антенном блоке (АБ) совокупность сигналов от ИСЗ, принятых антенной, усиливается в предварительном усилителе и фильтруется во всей полосе (от 1570 до 1625 МГц в совмещенной АП) несущих частот полосовым фильтром.

В качестве антенны часто используется микрополосковая, что обусловлено ее малой массой и габаритными размерами, простотой изготовления и дешевизной. Микрополосковая антенна состоит из двух параллельных проводящих слоев, разделенных диэлектриком; нижний проводящий слой является заземленной плоскостью, верхний Ї собственно излучателем антенны (по форме излучатель может быть прямоугольником, эллипсом, пятиугольником и т.д.). Микрополосковая антенна имеет диаграмму направленности, обеспечивающую прием сигналов правосторонней круговой поляризации из верхней полусферы. Применяются и другие типы слабонаправленных антенн.

Рис. 2.3. Структурная схема аппаратуры потребителя

Полосовой фильтр осуществляет фильтрацию сигналов в полосе частот МГц. На выходе блока имеется радиочастотный соединитель, к которому подключается коаксиальный кабель, соединяющий АБ с радиочастотным трактом.

Радиочастотный тракт навигационного приемника является многоканальным устройством, в котором, как отмечалось выше, проводится аналоговое усиление сигналов, фильтрация и преобразование несущей частоты сигналов ИСЗ (понижение частоты), а также преобразование аналогового сигнала в цифровую форму. Так как в СРНС ГЛОНАСС сигнал от каждого из спутников имеет свою несущую частоту, то каждый канал должен быть настроен на частоту сигнала одного из ИСЗ и селектировать частоты сигналов других ИСЗ. Схема такого приемника приведена на рис. 2.4.

Рис. 2.4. Радиочастотный тракт навигационного приемника

Одним из принципиальных моментов разработки навигационного приемника является выбор частотного плана. Под частотным планом подразумевается выбор частоты задающего генератора, частот гетеродинирования и дискретизации для того, чтобы минимизировать уровень паразитных гармоник, возникающих в схеме из-за различных нелинейностей и шумов и влияния цифровой части приемника.

Для этого предварительно выбирают частоту задающего генератора, промежуточные частоты и частоты гетеродиниривания, а затем определяют характеристики фильтров и коэффициенты усиления каскадов. Далее анализируют получившуюся архитектуру и выявляют все нелинейные элементы, в результате работы которых могут возникать гармоники, попадающие в спектр сигнала. Варьируя промежуточные частоты, частоту дискретизации, характеристики смесителей, усилителей и фильтров, подбирают конфигурацию, обеспечивающую оптимальный прием сигнала, при котором в спектре обрабатываемого сигнала от нелинейных преобразований появляются только дальние гармоники; эти гармоники малы и не оказывают серьезного влияния на сигнал.

Кроме этого, частоту дискретизации выбирают кратной частоте задающего генератора и всем промежуточным частотам.

Выбор числа уровней квантования в аналого-цифровом преобразователе (АЦП) определяется, в основном, типом помех на входе приемника. Если основным видом помех является белый гауссовский шум, то возможно применение малоуровневого квантования вплоть до бинарного. Если помеха узкополосная стационарная, то необходимо большее число уровней квантования.

В приведенной схеме использовано трехкратное понижение частоты сигналов (используется и двукратное понижение частоты). Первое понижение частоты до уровня проводится, для всех принятых сигналов, смесителем СМ0. После общего усиления и фильтрации сигналов усилителем промежуточной частоты УПЧ0 с полосой пропускания для совмещенной АП , сигнал поступает в N каналов, в каждом из которых проводится второе преобразование частоты (до значения ), ориентированное на прием сигнала от конкретного ИСЗ. Полосу пропускания канального УПЧ выбирают таким образом, чтобы выделялся сигнал одного из спутников и селектировались сигналы других. Третье понижение частоты проводят до уровня .

Опорные сигналы, поступающие на смесители, формируются синтезатором частот СЧ из опорной частоты опорного генератора ОГ. Управление работой синтезатора частот осуществляется по сигналам, поступающим от навигационного вычислителя. Опорный генератор - это устройство, во многом определяющее качество работы АП в целом. От ОГ в значительной степени зависят такие параметры, как время получения первого отсчета, точность определения координат потребителя, надежность, уровень потребления энергии, масса и габариты аппаратуры.

На выходе приемника аналоговые сигналы частоты в АЦП преобразуются в цифровую форму.

Коррелятор выполняет одну из основных задач. Для оценки координат и вектора скорости потребителя необходимо измерить радионавигационные параметры сигнала: задержку распространения и доплеровское смещение частоты. Эти параметры нужно измерить для сигналов, приходящих от каждого спутника.

Теория оптимальной фильтрации позволяет решить эту задачу в общем виде. На выходе оптимального фильтра получаем оценку измеряемого параметра. Однако алгоритмы оптимального приёма очень сложны и в настоящее время не реализуются в существующих приемниках. Для упрощения приемной аппаратуры задачу получения оценок координат и вектора скорости потребителя разбивают на два этапа обработки: первичную и вторичную. На этапе первичной обработки решается задача измерения навигационных параметров, а на этапе вторичной обработки вычисляются координаты и вектор скорости потребителя с использованием полученных на первом этапе оценок радионавигационных параметров и других навигационных функций. Большая часть алгоритмов первичной обработки производится в блоке цифровой обработки сигнала навигационного приёмника - в корреляторе.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.