Рефераты. Построение экономической модели с использованием симплекс-метода

           Симлекс-метод - это характерный пример итерационных вычислений , используемых при решении большинства оптимизационных задач . В данной главе рассматриваются итерационные процедуры такого рода , обеспечивающие решение задач с помощью моделей исследования операций . 

          В гл 2 было показано , что правая и левая части ограничений линейной модели могут быть связаны знаками <= , = и => . Кроме того , переменные , фигурирующие в задачах ЛП , могут быть неотрицательными или не иметь ограничения в знаке . Для построения общего метода решения задач ЛП соответствующие модели должны быть представлены в некоторой форме , которую назовем стандатрной формой линейных оптимизационных моделей . При стандартной форме линейной модели

1.    Все ограничения записываются в виде равенств с неотрицательной правой частью ;

2.    Значения всех переменных модели неотрицательны ;

3.    Целевая функция подлежит максимизации или минимизации .

Покажем , каким образом любую линейную модель можно привести к стандартной .

 

 

           Ограничения  

 

1.    Исходное ограничение , записанное в виде неравенства типа <= ( =>) ,

можно представить в виде равенства , прибавляя остаточную переменную к левой части ограничения ( вычитая избыточную переменную из левой части ) .

      Например , в левую часть исходного ограничения

5X1 + 100X2 <= 1000

вводистя остаточная переменная S1 > 0 , в результате чего исходное неравенство обращается в равенство

5X1 + 100X2 + S1 = 1000 , S1 => 0

Если исходное ограничение определяет расход некоторого ресурса , переменную S1 следует интерпретировать как остаток , или неиспользованную часть , данного ресурса .

      Рассмотрим исходное ограничение другого типа :

X1 - 2X2 => 0

Так как левая часть этого ограничения не может быть меньше правой , для обращения исходного неравенства в равенство вычтем из его левой части избыточную переменную S2 > 0 . В результате получим

X1 - 2X2 - S2 = 0 , S2 => 0

2.   Правую часть равенства всегда можно сделать неотрицательной , умножая оби части на -1 .

Например равенство  X1 - 2X2 - S2 = 0 эквивалентно равенству - X1 + 2X2 + S2 = 0

3.   Знак неравенства изменяется на противоположный при умножении обеих частей на -1 .

     Например можно вместо 2 < 4 записать - 2 > - 4 , неравенство X1 - 2X2 <= 0 заменить на - X1 + 2X2 => 0

 

 

         Переменные

 

      Любую переменную Yi , не имеющую ограничение в знаке , можно представить как разность двух неотрицательных переменных :

Yi=Yi’-Yi’’, где Yi’,Yi’’=>0.

Такую подстановку следует использовать во всех ограничениях , которые содержат исходную переменную Yi , а также в выражении для целевой функции .

      Обычно находят решение задачи ЛП , в котором фигурируют переменные Yiи Yi’’ , а затем с помощью обратной подстановки определяют величину Yi . Важная особенность переменных Yiи Yi’’ состоит в том , что при любом допустимом решении только одна из этих переменных может принимать положительное значение , т.е. если Yi’>0 , то Yi’’=0, и наоборот . Это позволяет рассматривать Yiкак остаточную переменную , а Yi’’ - как избыточную переменную , причем лишь одна из этих переменных может принимать положительное значение . Указанная закономерность широко используется в целевом программировании и фактически является предпосылкой для использования соответсвующих преобразований в задаче 2.30

 

 

         Целевая функция

 

      Целевая функция линейной оптимизационной модели , представлена в стандартной форме , может подлежать как максимизации , так и минимизации . В некоторых случаях оказывается полезным изменить исходную целевую функцию .

      Максимизация некоторой функции эквивалентна минимизации той же функции , взятой с противоположным знаком , и наоборот . Например максимизация функции

Z = X1 + 25X2

эквивалентна минимизации функции

( -Z ) = -X1 - 25X2

Эквивалентность означает , что при одной и той же совокупности ограничений оптимальные значения X1 , X2 , в обоих случаях будут одинаковы . Отличие заключается только в том , что при одинаковых числовых значениях целевых функций их знаки будут противоположны .

Симплекс-метод .

              В вычислительной схеме симплекс-метода реализуется упорядоченный процесс , при котором , начиная с некоторой  исходной допустимой угловой точки ( обычно начало координат ) , осуществляются последовательные переходы от одной допустимой экстремальной точки к другой до тех пор , пока не будет найдена точка , соответствующая оптимальному решению .

               Общую идею симплекс-метода можно проиллюстрировать на примере модели , посроенной для нашей задачи . Пространство решений  этой задачи представим на рис. 1 . Исходной точкой алгоритма является начало координат ( точка А на рис. 1 ) . Решение , соответствующее этой точке , обычно называют начальным решением . От исходной точки осуществляется переход к некоторой смежной угловой точке .

     Выбор каждой последующей экстремальной точки при использовании симплекс-метода определяется следующими двумя правилами .

1.   Каждая последующая угловая точка должна быть смежной с предыдущей . Этот переход осуществляется по границам ( ребрам ) пространства решений .

2.   Обратный переход к предшествующей экстремальной точке не может производиться .

Таким образом , отыскание  оптимального решения начинается с некоторой допустимой угловой точки , и все переходы осуществляются только к смежным точкам , причем перед новым переходом каждая из полученных точек проверяется на оптимальность .

Определим пространство решений и угловые точки агебраически . Требуемые соотнощшения устанавливаются из указанного в таблице соответствия геометрических и алгебраических определений .

 

Геометрическое определение

Алгебраическое определение              ( симплекс метод )

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.