виде автоматизированных навыков, позволяющих найти и применить оптимальную текстовую структуру в каждом конкретном случае. Но иногда интуиция нас подводит. Тогда полезно воспроизвести механизмы соответствующих операций (и даже проверить их графическими схемами). Об этом свидетельствует анализ некоторых типичных ошибок. Рассмотрим следующий фрагмент текста: «Милиционер, сержант милиции Б. оправился от ран и приступил к службе». Выделенная курсивом часть фразы образована из двух исходных понятий, причем одно из них («сержант милиции») является видовым по отношению ко второму («милиционер»). Напрашивается вывод о словесной избыточности выражения и целесообразности его упрощения за счет одного из исходных понятий. Но, какой элемент конструкции может быть устранен без ущерба для информативности текста? Обратим внимание на тот факт, что Б. одновременно включается в класс сержантов милиции и в класс милиционеров. Таким образом, здесь перед нами, безусловно, логическое умножение. Но, как установлено ранее, логическое произведение видового и родового понятий объемно равно видовому (см. рис.17). Следовательно, родовое понятие является избыточным и может быть устранено из текста, который должен выглядеть так: «Сержант милиции Б. оправился от ран и приступил к службе». И в самом деле, если Б. является сержантом милиции, то нет никакой нужды называть его еще и милиционером. Читателю предлагается подумать, почему иной вариант правки текста (устранение понятия «сержант милиции» при сохранении понятия «милиционер») связан с информационными потерями.
Неопределённые (размытые) понятия.
В интеллектуально-речевой практике функционирует множество понятий, обладающих достаточно ясным содержанием и резким объемом. Содержание понятия может считаться ясным, если известен входящий в него набор существенных признаков. Объем понятия считается резким, если применительно к любому объекту однозначно решается вопрос, относится он к данному множеству или нет. Понятия с ясным содержанием и резким объемом принято называть определенными, а соответствующие множества - четкими или резкими. Но далеко не для каждого понятия его логические характеристики - содержание и объем - могут быть указаны с достаточной степенью точности. Понятия, не обладающие ясным содержанием и резким объемом, носят название неопределенных или размытых (соответствующие множества часто именуются нерезкими или расплывчатыми). Различие между определенными и неопределенными понятиями легче всего показать путем соотнесения этих понятий с результатами их отрицания в пределах некоего универсального класса.
Рассмотрим с этой точки зрения понятие «гроссмейстер». На рисунке 20 универсальный класс представляет множество шахматистов и делится на два подмножества, соответствующих понятиям «гроссмейстер» (Р) и «не-гроссмейстер» (не-Р). Второе из этих понятий образовано посредством отрицания первого. Подмножество гроссмейстеров характеризуется просто: в него входит тот и только тот, кто официально обладает этим шахматным званием.
Рис.20.
P и не-P -понятия с резким объёмом
Рис.21.
Q и не-Q -понятия с нерезким объёмом
Столь же просто характеризуется подмножество не-гроссмейстеров: оно состоит из тех шахматистов, кому это звание не присвоено. В универсальном классе эти два подмножества разделены резкой границей. Относительно любого шахматиста вопрос о том, является он гроссмейстером или нет, решается однозначно и категорично. Понятие «гроссмейстер», безусловно, должно быть признано определенным. Теперь в том же универсальном классе (рис.21) таким же способом образуем контрадикторные понятия «хороший шахматист» (Q) и «тот, кто не является хорошим шахматистом» (не-Q). Казалось бы, рассматриваемая ситуация аналогична предыдущей, однако это не так. Вероятно, игра в силу гроссмейстера или мастера (быть может, кандидата в мастера, перворазрядника и т. д.) соответствует представлению о хорошем шахматисте, тогда как одно лишь знание правил шахматной игры - явно недостаточное условие для такой характеристики. Но ведь эти крайние точки, два полюса, между которыми имеется большой набор разнохарактерных оценок. Одни из оценок градуируют силу шахматистов в национальном или даже международном масштабе (шахматные звания и разряды). Такие оценки официально закреплены, и соответствующие им понятия имеют ясное содержание и резкий объем. Другие оценки не носят официального характера, однако, широко применяются в обиходе для характеристики любого шахматиста - от чемпиона мира до некоего Ивана Ивановича, выходящего со своей доской на бульвар, чтобы сразиться с соседом. Найти в этом наборе оценок резкую границу, отделяющую хороших
шахматистов от тех, кто не заслуживает такого названия, принципиально невозможно. Поэтому и объем рассматриваемого понятия недостаточно резок. В универсальном классе образуется подмножество объектов, отнести которые к классам Q или не-Q в одинаковой степени затруднительно (на схеме это подмножество представлено зоной, отмеченной вопросительными знаками). «Хороший шахматист» типичный пример размытого понятия. С размытыми понятиями мы встречаемся очень часто, и в этом нет ничего удивительного. Их существование обусловлено рядом постоянно действующих объективных и субъективных обстоятельств. В распространённости размытых понятий можно убедиться, попытавшись ответить на следующие вопросы. Если человек полнеет, то с какого именно момента он становится полным, с какого толстым и с какого тучным? Можно ли определить понятие «молодой специалист» точным указанием на стаж работы в данной области? Как отличить реку от ручья, руководствуясь обычным толкованием этих понятий, то есть исходя из того, что река — это «водный поток значительных размеров», а ручей — «небольшой водный поток»? «Толстый», «тонкий», «молодой специалист», «опытный врач», и т.п. — все это недостаточно определенные понятия. Значительный слой размытых понятий связан с действующими в определенной социальной среде системами ценностей и оценок (так называемые аксиологические понятия). Рассмотрим следующую ситуацию. Сообщение о том, что данный фильм цветной, содержит однозначную и объективную информацию; сообщение, что тот же самый фильм прекрасен, не обладает аналогичной степенью определенности. Понятие «цветной фильм» имеет ясное содержание и резкий объем. Оценочное понятие «прекрасный фильм» не обладает ясным содержанием, оно является размытым и, в сущности, передает эмоциональное состояние того, кто считает фильм прекрасным.
ОГЛАВЛЕНИЕ.
ВВЕДЕНИЕ
2
СОДЕРЖАНИЕ ПОНЯТИЯ
3
Конкретные и абстрактные понятия
Относительные и абсолютные понятия
4
Положительные и отрицательные понятия
Собирательные и разделительные понятия
5
ОБЪЁМ ПОНЯТИЯ
6
Общие понятия
Единичные понятия
Пустые понятия
УНИВЕРСАЛЬНЫЙ КЛАСС
ОТНОШЕНИЕ МЕЖДУ ПОНЯТИЯМИ
7
Равнообъёмность понятий
Перекрещивание понятий
8
Внеположенность понятий
9
Подчинение понятий
11
ОТНОШЕНИЕ МЕЖДУ НЕОПРЕДЕЛЁННО БОЛЬШИМ КОЛИЧЕСТВОМ ПОНЯТИЙ
12
ОБЩАЯ ХАРАКТЕРИСТИКА ОПЕРАЦИЙ С ПОНЯТИЯМИ
Отрицание понятий
14
Сложение и умножение понятий
15
НЕОПРЕДЕЛЁННЫЕ ПОНЯТИЯ
18
ЛИТЕРАТУРА
22
ЛИТЕРАТУРА.
1. «ЛОГИКА И ТЕОРИЯ ОРГУМЕНТАЦИИ» В.Д.Евстратов, Г.К.Конык, издательство Казанского Государственного Технического Университета, 1999 г.
2. «ЛОГИКА» В.И.Курбатов, издательство «Феникс», 1996 г.
3. «ЛОГИКА» В.И.Свинцов, издательство «Скорина», 1998 г.
4. «ЛОГИКА: ЛОГИЧЕСКИЕ ОСНОВЫ ОБЩЕНИЯ» В.Ф.Берков, Я.С.Яскевич, В.И.Бартон и другие, издательство «Наука», 1994 г.
5. «ПРАКТИЧЕСКИЙ КУРС ЛОГИКИ ДЛЯ ГУМАНИТАРИЕВ» В.Н.Брюшинкин, издательство «Новая школа», 1996 г.
Страницы: 1, 2, 3, 4, 5