При исследовании многих типов ТМ возможна рентгенофлуоресцентная съёмка (РФС) по поверхности отложений без отбора проб. Например, РФС с успехом применяется для картирования поверхности хвостохранилищ оловорудных, полиметаллических и некоторых других типов месторождений.
В процессе съёмки определяется содержания основных полезных компонент – Cu, Zn, Pb, Sn и др., сопутствующих– Fe, As и др., редких и рассеянных элементов – Ag, Cd, Re, Ga и др., которые имеют промышленное значение и могут быть извлечены при переработке техногенных руд, а также Sr, Ba, Sb, Zr, Rb, Ca, S, P, которые определяют технологический тип руды и влияют на извлечение полезных компонент. Такая многоэлементная съёмка может быть выполнена в настоящее время ретгенофлуоресцентным методом с портативной или переносной аппаратурой на пропорциональных, полупроводниковых или кристалл-дифракционных детекторах (АР-104, Дукат, Спетроскан и др.). По результатам съёмки выделяются перспективные для отработки участки ТМ.
Второй этап исследований включает также изучение физических свойств и минералогическое и петрофизическое изучение материалов проб и образцов. Результаты определения вещественного состава, минералого-петрографической и петрофизической характеристик техногенных отложений оформляются в виде геолого-технологической карты или плана.
3. Разбуривание перспективных участков. Основная его задача – заверка результатов поверхностной съёмки и получение данных о пространственном распределении оруденения в техногенных отложениях. На основе этих сведений осуществляется прогнозный подсчёт запасов полезных компонент, разработка плана отработки ТМ с учётом технологических типов оруденения и составление геологической карты и разрезов.
Разбуривание перспективных участков осуществляется по густой, разведочной сети – 10´10 м, а для неперспективных участков по более редкой, поисковой, сети – 50´50 м с экспресс-анализом шламовых проб рентгенофлуоресцентным методом, на тот же круг элементов, что и при съёмке.
Результаты исследований по этапам 1-3 уже достаточны для того чтобы начать разработку ТМ. Однако, для более эффективного использования техногенного сырья целесообразно проведение дополнительных исследований для уточнения технологии его переработки. С этой целью осуществляются исследования 4-го этапа.
4. Изучение малой технологической пробы. Оно направлено на решение технологических вопросов и составление технико-экономического обоснования (ТЭО) промышленного освоения ТМ с разработкой кондиций.
Малая технологическая проба массой от 50 до 100 т отбирается с перспективных участков. Изучение такой пробы позволяет:
§ оценить обогатимость руд, используя полученные данные по её гранулометрическому составу, распределению полезных компонент по классам крупности, контрастности оруденения, определённой химическим или радиометрическим методом, по вещественному и минералогическому составу, по степени окисленности рудных минералов и опытной флотации или гравитации;
§ оценить возможность и перспективы радиометрической порционной сортировки транспортных емкостей (вагонеток, самосвалов, транспортёров и т.д.) и покусковой сепарации при отработке техногенных отложений;
§ разработать рациональную технологическую схему извлечения полезных компонент для данного ТМ с экономическим обоснованием и проектом технологической линии для отработки ТМ.
Общая структурная схема переработки руд с применением радиометрической сортировки и сепарации руд показана на рис.3, но для каждого конкретного месторождения она должна быть уточнена и конкретизирована.
Рис.3. Общая принципиальная схема технологии переработки коренных и техногенных руд с применением предварительной концентрации на основе радиометрической сортировки и сепарации.
Успех изучения и комплексного использования ТМ в значительной степени зависит от уровня аналитического обеспечения. Очевидно, что от качества определения химического состава многокомпонентных веществ зависит достоверность выводов о полезности и перспективности использования отходов промышленного производства. Многие традиционные аналитические методы далеко не всегда удовлетворяют требованиям практики из-за их трудоёмкости, недостаточной точности и чувствительности. Поэтому закономерен интерес к использованию инструментальных методов анализа, которые позволяют выполнить количественные определения широкого круга элементов в приемлемые сроки в автоматическом или полуавтоматическом режиме с выводом информации на диспетчерский пульт для оперативного управления процессом производства, в память компьютера или непосредственно в соответствующую базу данных.
Особое место при решении перечисленных задач принадлежит ядернофизическим методам:
§ рентгенофлуоресцентному,
§ нейтронно-активационному,
§ гамма-спектрометрическому,
§ эманационному,
§ радиометрическому.
Комплекс этих методов позволяет определять содержания практически всех элементов, представляющих интерес, и исследовать практически все объекты ОС, в том числе воздух, воду, почвы, горные породы, руды, продукты и отходы их переработки и т.д. При этом обеспечивается не только количественная характеристика элементного состава объекта по стабильным изотопам, но и радиационная оценка по активности естественных и искусственных радионуклидов.
Ядернофизические методы и аппаратура для элементного анализа вещества получили в последние 2-3 десятилетия интенсивное развитие и широкое применение. Используя достижения атомной и ядерной физики, полупроводниковой и электронной вычислительной техники, создан к настоящему времени целый ряд анализирующих приборов и разработаны методические основы применения этих методов для решения разнообразных задач геологии, экологии, металлургии, строительства, медицины, пищевой, химической, горнодобывающей и горноперерабатывающей отраслей промышленности и др.
При исследовании таких сложных объектов как ТМ ядернофизические методы обладают целым рядом достоинств по сравнению с традиционными методами анализа вещества:
1. Возможность анализа техногенных отложений в естественном залегании, т.е. без отбора проб, а также в полевых условиях с помощью передвижных полевых лабораторий.
2. Высокая экспрессность анализа, длительность которого обычно составляет не более нескольких десятков секунд и редко превышает 10-15 мин, что обеспечивает, с одной стороны, высокую производительность, достигающую десятков и даже сотен тысяч элементоопределений в год, а с другой стороны, решение принципиально новых задач, недоступных традиционным методам анализа. Например, это достоинство в сочетании с первым позволяет осуществить сортировку руд по качеству в транспортных емкостях, корректировку технологического процесса обогащения при анализе пульпы в потоке и т.д.
3. Высокая экономическая эффективность.
4. Высокие точность и чувствительность, низкий предел обнаружения, который, например, при НАА достигает для некоторых элементов 10-8-10-10%. Погрешность определений обычно не превышает 10-20% отн. даже при выполнении анализа без отбора проб.
5. Возможность одновременного многокомпонентного анализа и получение результатов в реальном масштабе времени. При РФА число одновременно определяемых элементов обычно не менее трёх-четырёх, например, Ni, Cu, Zn, Pb, Fe, а при НАА может достигать 30-40 и более.
6. Анализ является неразрушающим, материал образца полностью сохраняется после завершения измерений.
7. Низкая трудоёмкость, обусловленная высокой экспрессностью и простотой пробоподготовки или даже полным отсутствием какой-либо подготовки, так как можно анализировать образцы различного размера, формы и вида (штуф, порошок, жидкость, газ) или осуществлять анализ без отбора проб отложений, в естественном их залегании.
8. Анализ выполняется, как правило, в широком диапазоне концентраций от 10-4-10-8 до 100% при этом без существенного изменения методики и легко поддаётся автоматизации.
9. Результаты определения содержания элементов в веществе не зависят от типа их химических соединений.
Из перечисленных достоинств ЯФМ следует, что они могут с успехом применяться на всех этапах изучения и утилизации ТМ, начиная от геолого-геофизической съёмки поверхности отложений ТМ, разбуривания перспективных участков и изучения технологических проб и кончая опробованием продуктов обогащения и их переработки, включая автоматические системы управления (АСУ) этими процессами. Эффективное решение этих задач в настоящее время обеспечено соответствующими аппаратурными и методическими разработками (аппаратура типа «Спектроскан», «АР-104», носимые спектрометры типа «Поиск», рентгенорадиометрическая каротажная аппаратура и т.д.; методики многокомпонентного анализа со сцинтилляционными, пропорциональными, полупроводниковыми и кристалл-дифракционными детекторами).
Контроль качества должен осуществляться на всех этапах и при всех видах полевых и лабораторных работ. Аналитические исследования должны проводиться в лабораториях, прошедших аккредитацию в установленном порядке. Контроль качества аналитических работ осуществляется в форме:
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12