Рефераты. Солнечная энергетика

Подобно CulnSe2, наилучшие элементы на основе CdTe включа­ют гетеропереход с CdS в качестве оконного слоя. Оксид олова ис­пользуется как позрачный контакт и просветляющее покрытие. Се­рьезная проблема на пути применения CdTe - высокое сопротив­ление слоя р-СоТе, что приводит к большим внутренним потерям. Но она решена в p-i-n-структуре с гетеропереходом CoTe/ZnTe (рис. 9).

Наиболее ответственный этап формирования СЭ на осно­ве CdS/CdTe - осаждение по­глощающего слоя CdTe толщи­ной 1,5-6 мкм. Для этого ис­пользуют различные способы: сублимацию/конденсацию, электрохимическое осаждение, трафаретную печать, химичес­кое осаждение из газовой фазы и распыление. Пленки СdТе, по­лученные данными методами,  обладают высокой подвижностью носителей заряда, а СЭ на их ос­нове - высокими значениями КПД, от 10 до 16%.

CuGaSe2 также весьма интересен как тонкопленочный элемент солнечных батарей. Благодаря запрещенной зоне шириной 1,68 эВ он используется как верхний элемент тандемной солнечной бата­реи с нижним элементом из CulnSe2. Слои CuGaSe2 формируют пу­тем последовательного осаждения термическим испарением тон­ких слоев Ga, Se и Си на поверхность стеклянной подложки, покры­той слоем молибдена толщиной 1 мкм . Далее из получен­ной структуры в установке быстрого термического отжига в течение пяти минут при температуре 550°С получают соединение CuGaSe2.

Одним из перспективных материалов для дешевых солнечных батарей благодаря приемлемой ширине запрещенной зоны (1,4-1,5 эВ) и большому коэффициенту поглощения 104 см-1 явля­ется Cu2ZnSnS4. Его главное достоинство в том, что входящие в не­го компоненты широко распространены в природе и нетоксичны. Однако пока достигнута эффективность преобразования всего в 2,3% при использовании гетероперехода Cu2ZnSnS4 и CdS/ZnO.

Среди СЭ особое место занимают батареи, использующие орга­нические материалы, В частности, КПД СЭ на основе диоксида титана, покрытого органическим красителем, весьма высок --11%. Немаловажно, что подложками в таких элементах могут вы­ступать полимерные пленки.

Основа СЭ данного типа - широкозонный полупроводник, обыч­но ТiO2, покрытый монослоем органического красителя, как прави­ло - цис-(NСS)2бис(4,4''ДИкарбокси-2,2'бипиридин)-рутением (II) (рис.12). Фотоэлектрод такого устройства представляет собой на-нопористую пленку ТiO2 толщиной 1 мкм, осажденную на ТСО на стекле. Отражающим электродом служит тонкий слой Pt, осажден­ный на ТСО на стекле. Пространство между двумя электродами заполняют электролитом, обычно содержащим иодид/трииодид

(I-/Iз). рис. 10

Принцип работы элемента основан на фотовозбуждении краси­теля и быстрой инжекции электрона в зону проводимости ТiO2. При этом молекула красителя окисляется, через элемент идет электри­ческий ток и на платиновом электроде происходит восстановление трииодида до иодида. Затем иодид проходит через электролит к фотоэлектроду, где восстанавливает окисленный краситель.

Для солнечной батареи на эффекте Шотки используют фталоцианин - органический полупроводник р-типа. В нем наиболее привлекают высокая фотопроводимость в видимой области спект­ра и термическая стабильность . Основной недостаток - низкое время жизни носителей вследствие большого числа ловушек. Для повышения времени жизни фталоцианин легируют фуллеренами или 2-, 4-, 7-тринитрофлуореноном, создающими акцепторные уровни.

Фуллерены (С60) также весьма перспективны для органических солнечных батарей на основе гетероструктур C60/p-Si в связи с их способностью к сильному поглощению в коротковолновой области солнечного спектра. Поликристаллический фуллерен С60 толщи­ной ~1 мкм осаждают на кремниевую подложку в глубоком вакууме. Далее на слой С60 наносят алюминиевые контакты. В качестве зад­него контакта используется сплав Gaxlny на позолоченной подложке.

Термофотовольтаическое производство электроэнергии, т.е. преобразование длинноволнового (теплового) излучения посредством фотовольтаических ячеек было открыто в 1960 году и вызыва­ет все больший интерес, особенно в связи с современными дости­жениями в области создания узкозонных полупроводников. В термофотовольтаической ячейке тепло преобразуется в электроэнергию посредством селек­тивных эмиттеров из оксидов редкоземельных элементов -эрбия и иттербия. Эти вещества поглощают инфракрасное излу­чение и вновь излучают его в уз­ком энергетическом диапазоне. Излучение может быть эффек­тивно преобразовано с помо­щью фотовольтаической ячейки с соответствующей шириной за­прещенной зоны. В качестве ма­териала для фотоэлектрической ячейки более всего подходит lnxGa1-xAs,поскольку он позволя­ет добиться необходимой шири­ны запрещенной зоны.

 В типичном многопереход­ном солнечном элементе одиночные фотоэле­менты расположены друг за дру­гом таким образом, что солнеч­ный свет сначала попадает на элемент с наибольшей шириной запрещенной зоны, при этом поглощаются фотоны с наиболь­шей энергией. Пропущенные верхним слоем фотоны проника­ют в следующий элемент с меньшей шириной запрещенной зоны и т.д.

Основное направление исследований в области каскадных эле­ментов связано с использованием арсенида галлия в качестве од­ного или нескольких компонентов. Эффективность преобразования подобных СЭ достигает 35 %. Кроме того, в каскадных элементах широко применяются аморфный кремний, сплавы на его основе (a-Si1-xCx:H, a-Si1-xGex:H), а также CulnSe2.

Каскадная батарея, в которой верхним элементом служит структура на основе GalnP с n-AllnP в качестве окна, далее следует туннельный диод на GaAs для прохождения но­сителей между элементами и нижний элемент из GaAs.

Весьма перспективны каскадные батареи, состоящие из трех элементов с различной шириной запрещенной зоны (рис.13). Верхний слой, поглощающий коротковолновую область сол­нечного спектра, сформирован из сплава на основе a-Si:H с шири­ной оптической щели 1,8 эВ. Для серединного элемента в качест­ве слоя i-типа использован сплав a-SiGe:H с содержанием германия 10-15%. Ширина оптической щели данного слоя (1,6 эВ) иде­альна для поглощения зеленой области солнечного спектра. Нижняя часть СЭ поглощает длинноволновую часть спектра, для этого используется i-слой a-SiGe:H с концентрацией гер­мания 40-50%. Непоглощенный свет отражается от заднего кон­такта на основе Ag/ZnO. Все три элемента каскадной солнечной батареи связаны между собой сильнолегированными слоями, образующими туннельные пере­ходы между соседними элемен­тами.

5.1. Оценка солнечного теплоснабжения в России.

Одной из наиболее технически подготовленных к внедрению технологий использования солнечной энер­гии является технология производства низкопотенци­ального тепла для отопления и горячего водоснабже­ния. Системы солнечного теплоснабжения (CCT) полу­чили достаточно широкое распространение во многих странах мира с благоприятными климатическими усло­виями (США, Австралия, Израиль и др.). Их суммарная мощность в мире в 1997 г. достигла 3 000 МВт [13].

B России масштабы внедрения CCT относительно невелики, несмотря на то что к настоящему времени разработаны и подготовлены к серийному производству солнечные коллекторы, не уступающие по своим техни­ко-экономическим показателям лучшим зарубежным аналогам [14]. Это объясняется целым рядом причин и в первую очередь отсутствием финансовых средств у потенциальных потребителей. Кроме этого, во многих случаях важной причиной является недостаточная эко­номическая эффективность CCT и их неконкурентоспо­собность с традиционными системами теплоснабжения [13]. B России эта проблема стоит особенно остро в связи с более суровыми (по сравнению со странами, внедряю­щими CCT) климатическими условиями и относитель­ной дешевизной органического топлива.

B ряде работ [13,15,16] приведены расчетные показа­тели CCT (удельная выработка энергии, коэффициент замещения нагрузки) для климатических условий Рос­сии, однако вопросам экономической конкурентоспо­собности уделено недостаточное внимание. Цель на­стоящей работы — оценка экономической и экологиче­ской эффективности CCT в условиях конкуренпии с традиционными энергоисточниками в широком ин­тервале изменения наиболее важных параметров: кли­матических условий и цен на органическое топливо. Поскольку эффективность CCT часто весьма сущест­венно зависит от местной специфики, сделана попытка установить лишь наиболее общие закономерности и выявить условия, при которых CCT, хотя бы в прин­ципе, могут найти применение в настоящее время и в перспективе. Поэтому рассмотрены лучшие солнеч­ные коллекторы (максимальная тепловая эффектив­ность и минимальная цена), варианты тепловой схемы с минимальными потерями, а также перспективные (на период до 2010 г.) цены на органическое топливо.

Основной энергетической характеристикой солнеч­ного коллектора является его КПД, равный отношению вырабатываемой (полезной) энергии к приходящей на его поверхность энергии солнечного излучения [17]

где FR — коэффициент отвода тепла из коллектора;  - поглощательная способность пластины коллектора; - пропускная способность прозрачных покрытий; UL - полный коэффициент тепловых потерь коллекто­ра, Вт/(м2•0C); T1 , - температура жидкости на входе в коллектор, 0C; Ta - температура окружающей среды, 0C; I - плотность потока суммарной солнечной радиа­ции в плоскости коллектора, Вт/м2 .показывает, что удельная теплопроизводительность q для лучшего  коллектора находится в интервале 650...900 кВт•ч/м2 в год (Санкт-Петербург - Сочи; Якутск - юг Забайка­лья) и зависит в основном от годового прихода солнеч­ной радиации в данной местности на горизонтальную поверхность Q и в меньшей степени — от распределения интенсивности радиации и температуры воздуха по ме­сяцам, которые обусловливают лишь небольшой разброс точек относительно аппроксимирующих зависимостей q(Q). B дальнейших расчетах применялась зависимость для лучшего коллектора (тип 2). Следует отметить, что полученные значения q примерно на 20 % превышают теплопроизводительность [15], определенную с учетом потерь CCT из-за неполного использования тепла.

 Основной экономической характеристикой CCT, как и любого энергоисточника, является стоимость вы­рабатываемой энергии (отношение суммарных дискон­тированных затрат к суммарному дисконтированному отпуску энергии) [18]


 ,

где k — удельные капиталовложения, дол/м2;  - ко­эффициент дисконтирования; - отношение годовых эксплуатационных затрат к капиталовложению; TL - срок службы.

Стоимость энергии представляет собой минималь­ную цену энергии CCT, при которой проект окупается к концу срока службы TL, который составляет 10—15 лет. Такой срок окупаемости достаточно велик, особенно для частного инвестора.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.