dа2 =281+2·3,5=288 мм
Диаметры впадин шестерни и колеса.
df1 = d1-2,5· mn, (3.16)
где df1 – диаметр впадин шестерни, мм.
df1 =71-2,5·3,5=62,25 мм
df2 = d2-2,5· mn , (3.17)
где df2 – диаметр впадин колеса, мм.
df2 =281-2,5·3,5=272,25 мм
Ширина колеса
b2 = ψba·aω , (3.18)
где b2 – ширина колеса, мм;
- межосевое расстояние, мм;
ψва – коэффициент ширины венца.
b2 = 0,25·180=45 мм
Ширина шестерни
b1= b2 +5 мм, (3.19)
где b1 – ширина шестерни, мм;
b2 – ширина колеса, мм.
b1= 45 +5=50 мм
3.6. Коэффициент ширины шестерни по диаметру
, (3.20)
где ψbd – коэффициент ширины шестерни;
b1 – ширина шестерни, мм;
d1 – делительный диаметр шестерни, мм.
=0,63
3.7. Определение окружной скорости колес
, (3.21)
где υ – окружная скорость колес, м/с;
ω2 - угловая скорость, рад/с;
=1,303 м/с
3.8. Определение коэффициента нагрузки
Кн= Кнβ· Кнα· Кнυ, (3.22)
Кн= 1,02· 1· 1,05 =1,071
3.9. Проверка контактного напряжения
, (3.23)
где σH – контактное напряжение, МПа;
Т2 – вращающий момент тихоходного вала редуктора, Н·м;
КН – коэффициент нагрузки;
– передаточное число редуктора.
=383,5 МПа
Примечание ,
Условие прочности выполнено
3.10. Действующие силы в зацеплении
Окружная , (3.24)
где Ft – окружная действующая сила, Н;
Т1 – вращающий момент быстроходного вала редуктора, Н·м;
=2756,96 Н·м
Радиальная , (3.25)
где Fr – радиальная действующая сила, Н;
α – угол зацепления в нормальном сечении принимается 20°;
β – угол наклона зубьев по расчету.
=1134,9 Н·м
Осевая Fa= Ft ·tgβ, (3.26)
где Fа – осевая действующая сила, Н.
Fa= 2756,96 ·tg8°=387 Н·м
3.11 Проверка зубьев на выносливость по напряжению изгиба
, (3.27)
где σF – выносливость зубьев, МПа;
Ft – окружная действующая сила, Н;
mn – нормальный модуль зацепления, мм.
Коэффициент нагрузки
КF= КFβ· КFυ=1,26·1,1=1,38; (3.28)
YF – коэффициент учитывающий форму зуба и зависящий от эквивалентного числа зубьев Zυ
У шестерни Zυ1=Z1/Cos3β=20/0,993=20,6=20;
У колеса Zυ2=Z2/Cos3 β=71/0,993=73,17=73;
Коэффициенты YF1=4,09 и YF2=3,61;
Определение коэффициентов YВ и КF2
, (3.29)
=0,94
, (3.30)
где ε2 – коэффициент торцового перекрытия, ε2 =1,5;
n – степень точности колес.
=0,916=0,92
Допускаемое напряжение при проверке на изгиб
, (3.31)
где допускаемое напряжение на изгиб, МПа;
- предел контакта выносливости, МПа;
- коэффициент безопасности.
Коэффициенты безопасности
=,
По таблице 3.9.Л.1. =1,75 для стали 45 улучшенной;
=1,0 для штамповок и отливок.
==1,75
Допускаемые напряжения
для шестерни - формула (3.31);
для колеса - по формуле (3.31).
=237 МПа
=206 МПа
Определяем отношение /YF
для шестерни /YF1;
для колеса /YF2.
/YF1=237/4,09=57,9 МПа
/YF2=206/3,61=57 МПа
Дальнейший расчет веду для зубчатого колеса, для которого найденное отношение меньше.
Проверяем прочность зуба колеса.
,
=72,69 МПа
72,69 МПа≤206 МПа
Условие выполнено
4. Предварительный расчет валов редуктора
Предварительный расчет проводят на кручение по пониженным допускаемым напряжением.
4.1. Диаметр выходного конца вала редуктора (ведущий – быстроходный вал)
, (4.1)
где dB1 - выходной конец вала редуктора;
Tk1 - крутящий момент, Н·м;
[ τ ] - допускаемое напряжение на кручение, МПа.
Так как ведущий вал испытывает изгиб от натяжения клиноременной передачи, допускаемое напряжение на кручение принимается [ τк ]
=29,47 мм
Принимаю dB1=30 мм
На выходной конец вала насаживается шкив ременной передачи. Принять диаметр вала под манжетное уплотнение dВ1у (необходимо оставить высоту буртика ≈ 1…3 мм для упора торца шкива ременной передачи).
dВ1y= dB1+2 мм=30+2=32 мм
Шестерня выполняется за одно целое с валом.
4.2. Диаметр выходного конца вала (ведомый-тихоходный вал редуктора)
, (4.2)
где dВ2 - Диаметр выходного конца вала.
=40,45 мм
Так как редуктор соединен муфтой с валом барабана ленточного конвейера, то необходимо согласовать диаметры выходного конца вала барабана и редуктора.
Принимаю dВ2 =45 мм
Принимаю:
1. диаметр вала под манжетное уплотнение dВ2у =45 мм;
2. диаметр вала под подшипник dВ2n =50 мм;
3. диаметр вала под посадку ступицы зубчатого колеса dk2=55 мм
диаметры остальных участков валов назначить исходя из конструктивных соображений при компоновке редуктора.
Рис. 4.2. Вал-шестерня
5. Конструктивные размеры шестерни и колеса
Шестерню выполняю за одно целое с валом, ее размеры, которые были определены выше.
d1=79 мм; da1=78 мм; df1=62,25 мм; b1=50 мм;
d2=281 мм; da2=288 мм; df2=272,25 мм; b2=45 мм.
5.1. Диаметр ступицы
dст=1,6·dК2, (5.1)
где dст – диаметр ступицы , мм;
dК2 – диаметр колеса, мм.
dст=1,6·55=88 мм
5.2. Длина ступицы
lст = (1,2-1,5) ·dк2, (5.2)
где lст – длина ступицы, мм.
lст = (1,2-1,5) ·55=66-82,5 мм
Из конструктивных соображений принимаю lст =50 мм
5.3. Определение толщины обода колеса
δ= (2,5-4)· mn, (5.3)
где δ - толщина обода, мм.;
mn – нормальный модуль, мм.
δ= (2,5-4)· 3,5=8,75-14 мм
Принимаю δ=14 мм
5.4. Принять толщину диска
с = 0,3·b2, (5.4)
где с – толщина диска, мм;
b2 – толщина колеса, мм.
с = 0,3·40=12 мм
Диаметр отверстий в диске конструктивно, но не менее 15 -20мм.
Принимаю 20 мм
6. Конструктивные размеры корпуса редуктора
Корпус и крышку редуктора изготовить литьем из серого чугуна
6.1. Толщина стенок корпуса и крышки
Для стенок корпуса
δ = 0,025 · аω + 1, (6.1)
где δ – толщина стенок корпуса, мм;
аω – межосевое расстояние, мм.
δ = 0,025 · аω + 1=0,025·180+1=5,5 мм
Для стенок крышки:
δ 1 = 0,02 · аω + 1, (6.2)
где δ1-толщина стенок крышки, мм.
δ 1 = 0,02 · 180 + 1=3,6 мм
Принимаю δ 1 =8 мм, δ =8 мм
6.2. Толщина фланцев поясов корпуса и крышки
Для верхнего пояса корпуса:
В = 1,5 · δ,
где В – толщина верхнего пояса, мм.
В = 1,5 · 8=12 мм
Для пояса крышки
В1 = 1,5·δ1, (6.3)
где δ1 – толщина нижнего пояса крышки, мм.
В1 = 1,5·8=12 мм
6.3. Толщина нижнего пояса корпуса редуктора
Р = 2,35 · δ. (6.4)
Р = 2,35 · 8=18,8 мм
Принимаю Р =19 мм
6.4. Толщина ребер жесткости корпуса редуктора
m =(0,85÷1)·δ, (6.5)
где m – толщина ребер основания корпуса, мм.
m =(0,85÷1)·8=6,8÷8 мм
Принимаю m =8 мм
6.5. Диаметр фундаментных болтов
d1=(0,03÷0,036) · аω + 12, (6.6)
d1=(0,03÷0,036) · 180 + 12=16,8÷17,76 мм
Принимаю резьбу болта М20 по ГОСТ 9150 – 59
6.6. Ширина нижнего пояса корпуса редуктора (ширина фланца для крепления редуктора к фундаменту)
К2 > 2,1·d1, (6.7)
К2 > 2,1·20=40,2 мм
Из конструктивных соображений принимаем 41 мм
6.7. Диаметр болтов, соединяющих корпус с крышкой редуктора
d3= (0,5÷0,75)·d1, (6.8)
d3= (0,5÷0,75)·20=10÷15 мм
Принимаю резьбу болтов М10 по ГОСТ 9150 – 59
6.8. Диаметр болтов, крепящих крышку к корпусу у подшипников:
d2=(0,7÷0,75)·d1,
d2=(0,7÷0,75)·20=14÷15 мм
Принимаю резьбу болтов М16 по ГОСТ 9150 – 59
6.9. Диаметр болтов для крепления крышек подшипника к редуктору.
dn = (0,7÷1,4) · δ, (6.10)
dn = (0,7÷1,4) · 8=5,6÷11,2 мм
Принимаю dn=10 мм для быстрого и тихоходного валов по ГОСТ 9150–59
7. Первый этап компоновки редуктора.
Компоновочный чертеж выполняется в одной проекции - разрез по осям валов при снятой крышке редуктора в масштабе 1:1.
Примерно посредине листа параллельно его длиной стороне проводим горизонтальную осевую линию, затем две вертикальные линии - оси валов на расстоянии aω=180 мм.
Страницы: 1, 2, 3, 4, 5