Рефераты. Проектирование редуктора

dа2 =281+2·3,5=288 мм

Диаметры впадин шестерни и колеса.

df1 = d1-2,5· mn,                                                              (3.16)

где df1 – диаметр впадин шестерни, мм.

df1 =71-2,5·3,5=62,25 мм

df2 = d2-2,5· mn ,                                                                    (3.17)

где df2 – диаметр впадин колеса, мм.

df2 =281-2,5·3,5=272,25 мм

Ширина колеса

b2 = ψba·aω ,                                                                              (3.18)

где b2 – ширина колеса, мм;

 - межосевое расстояние, мм;

ψва – коэффициент ширины венца.

b2 = 0,25·180=45 мм

Ширина шестерни

b1= b2 +5 мм,   (3.19)

где b1 – ширина шестерни, мм;

b2 – ширина колеса, мм.

b1= 45 +5=50 мм


3.6. Коэффициент ширины шестерни по диаметру


 ,                                                                           (3.20)

где ψbd – коэффициент ширины шестерни;

b1 – ширина шестерни, мм;

d1 – делительный диаметр шестерни, мм.

=0,63


3.7. Определение окружной скорости колес


,                                                                           (3.21)

где υ – окружная скорость колес, м/с;

ω2 - угловая скорость, рад/с;

d1 – делительный диаметр шестерни, мм.

=1,303 м/с

3.8. Определение коэффициента нагрузки


Кн= Кнβ· Кнα· Кнυ,                                                                 (3.22)

Кн= 1,02· 1· 1,05 =1,071


3.9. Проверка контактного напряжения


,                                        (3.23)

где σH – контактное напряжение, МПа;

 - межосевое расстояние, мм;

Т2 – вращающий момент тихоходного вала редуктора, Н·м;

КН – коэффициент нагрузки;

 – передаточное число редуктора.

=383,5 МПа

Примечание ,

Условие прочности выполнено


3.10. Действующие силы в зацеплении


Окружная ,                                                     (3.24)

где Ft – окружная действующая сила, Н;

Т1 – вращающий момент быстроходного вала редуктора, Н·м;

d1 – делительный диаметр шестерни, мм.

=2756,96 Н·м

Радиальная ,                                                (3.25)

где Fr – радиальная действующая сила, Н;

α – угол зацепления в нормальном сечении принимается 20°;

β – угол наклона зубьев по расчету.

=1134,9 Н·м

Осевая Fa= Ft ·tgβ,                                                               (3.26)

где Fа – осевая действующая сила, Н.

Fa= 2756,96 ·tg8°=387 Н·м


3.11 Проверка зубьев на выносливость по напряжению изгиба


,                                       (3.27)

где σF – выносливость зубьев, МПа;

Ft – окружная действующая сила, Н;

mn – нормальный модуль зацепления, мм.

Коэффициент нагрузки

КF= КFβ· КFυ=1,26·1,1=1,38;                                                (3.28)

YF – коэффициент учитывающий форму зуба и зависящий от эквивалентного числа зубьев Zυ

У шестерни Zυ1=Z1/Cos3β=20/0,993=20,6=20;

У колеса Zυ2=Z2/Cos3 β=71/0,993=73,17=73;

Коэффициенты YF1=4,09 и YF2=3,61;

Определение коэффициентов YВ и КF2

, (3.29)

=0,94

,                                                      (3.30)

где ε2 – коэффициент торцового перекрытия, ε2 =1,5;

n – степень точности колес.

=0,916=0,92

Допускаемое напряжение при проверке на изгиб

, (3.31)

где допускаемое напряжение на изгиб, МПа;

 - предел контакта выносливости, МПа;

- коэффициент безопасности.

Коэффициенты безопасности

=,

По таблице 3.9.Л.1. =1,75 для стали 45 улучшенной;

=1,0 для штамповок и отливок.

==1,75

Допускаемые напряжения

для шестерни - формула (3.31);

для колеса  - по формуле (3.31).

=237 МПа

=206 МПа

Определяем отношение /YF

для шестерни /YF1;

для колеса /YF2.

/YF1=237/4,09=57,9 МПа

/YF2=206/3,61=57 МПа

Дальнейший расчет веду для зубчатого колеса, для которого найденное отношение меньше.

Проверяем прочность зуба колеса.

,

=72,69 МПа

72,69 МПа≤206 МПа

Условие выполнено

4. Предварительный расчет валов редуктора


Предварительный расчет проводят на кручение по пониженным допускаемым напряжением.


4.1. Диаметр выходного конца вала редуктора (ведущий – быстроходный вал)


, (4.1)

где dB1 - выходной конец вала редуктора;

Tk1 - крутящий момент, Н·м;

[ τ ] - допускаемое напряжение на кручение, МПа.

Так как ведущий вал испытывает изгиб от натяжения клиноременной передачи, допускаемое напряжение на кручение принимается [ τк ]

=29,47 мм

Принимаю dB1=30 мм

На выходной конец вала насаживается шкив ременной передачи. Принять диаметр вала под манжетное уплотнение dВ1у (необходимо оставить высоту буртика ≈ 1…3 мм для упора торца шкива ременной передачи).

dВ1y= dB1+2 мм=30+2=32 мм

Шестерня выполняется за одно целое с валом.


4.2. Диаметр выходного конца вала (ведомый-тихоходный вал редуктора)

 

 , (4.2)

где dВ2 - Диаметр выходного конца вала.

=40,45 мм

Так как редуктор соединен муфтой с валом барабана ленточного конвейера, то необходимо согласовать диаметры выходного конца вала барабана и редуктора.

Принимаю dВ2 =45 мм

Принимаю:

1.                  диаметр вала под манжетное уплотнение dВ2у =45 мм;

2.                  диаметр вала под подшипник dВ2n =50 мм;

3.                  диаметр вала под посадку ступицы зубчатого колеса dk2=55 мм

диаметры остальных участков валов назначить исходя из конструктивных соображений при компоновке редуктора.







Рис. 4.2. Вал-шестерня


5. Конструктивные размеры шестерни и колеса


Шестерню выполняю за одно целое с валом, ее размеры, которые были определены выше.

d1=79 мм; da1=78 мм; df1=62,25 мм; b1=50 мм;

d2=281 мм; da2=288 мм; df2=272,25 мм; b2=45 мм.


5.1. Диаметр ступицы


dст=1,6·dК2, (5.1)

где dст – диаметр ступицы , мм;

dК2 – диаметр колеса, мм.

dст=1,6·55=88 мм


5.2. Длина ступицы


lст = (1,2-1,5) ·dк2, (5.2)

где lст – длина ступицы, мм.

lст = (1,2-1,5) ·55=66-82,5 мм

Из конструктивных соображений принимаю lст =50 мм


5.3. Определение толщины обода колеса

 

δ= (2,5-4)· mn, (5.3)

где δ - толщина обода, мм.;

mn – нормальный модуль, мм.

δ= (2,5-4)· 3,5=8,75-14 мм

Принимаю δ=14 мм

5.4. Принять толщину диска


с = 0,3·b2, (5.4)

где с – толщина диска, мм;

b2 – толщина колеса, мм.

с = 0,3·40=12 мм

Диаметр отверстий в диске конструктивно, но не менее 15 -20мм.

Принимаю 20 мм

6. Конструктивные размеры корпуса редуктора


Корпус и крышку редуктора изготовить литьем из серого чугуна


6.1. Толщина стенок корпуса и крышки


Для стенок корпуса

δ = 0,025 · аω + 1, (6.1)

где δ – толщина стенок корпуса, мм;

аω – межосевое расстояние, мм.

δ = 0,025 · аω + 1=0,025·180+1=5,5 мм

Для стенок крышки:

δ 1 = 0,02 · аω + 1, (6.2)

где δ1-толщина стенок крышки, мм.

δ 1 = 0,02 · 180 + 1=3,6 мм

Принимаю δ 1 =8 мм, δ =8 мм


6.2. Толщина фланцев поясов корпуса и крышки


Для верхнего пояса корпуса:

В = 1,5 · δ,

где В – толщина верхнего пояса, мм.

В = 1,5 · 8=12 мм

Для пояса крышки

В1 = 1,5·δ1, (6.3)

где δ1 – толщина нижнего пояса крышки, мм.

В1 = 1,5·8=12 мм

6.3. Толщина нижнего пояса корпуса редуктора


Р = 2,35 · δ. (6.4)

Р = 2,35 · 8=18,8 мм

Принимаю Р =19 мм


6.4. Толщина ребер жесткости корпуса редуктора


m =(0,85÷1)·δ, (6.5)

где m – толщина ребер основания корпуса, мм.

m =(0,85÷1)·8=6,8÷8 мм

Принимаю m =8 мм


6.5. Диаметр фундаментных болтов


d1=(0,03÷0,036) · аω + 12, (6.6)

d1=(0,03÷0,036) · 180 + 12=16,8÷17,76 мм

Принимаю резьбу болта М20 по ГОСТ 9150 – 59


6.6. Ширина нижнего пояса корпуса редуктора (ширина фланца для крепления редуктора к фундаменту)

 

К2 > 2,1·d1, (6.7)

К2 > 2,1·20=40,2 мм

Из конструктивных соображений принимаем 41 мм


6.7. Диаметр болтов, соединяющих корпус с крышкой редуктора


d3= (0,5÷0,75)·d1, (6.8)

d3= (0,5÷0,75)·20=10÷15 мм

Принимаю резьбу болтов М10 по ГОСТ 9150 – 59


6.8. Диаметр болтов, крепящих крышку к корпусу у подшипников:


d2=(0,7÷0,75)·d1,

d2=(0,7÷0,75)·20=14÷15 мм

Принимаю резьбу болтов М16 по ГОСТ 9150 – 59


6.9. Диаметр болтов для крепления крышек подшипника к редуктору.


dn = (0,7÷1,4) · δ, (6.10)

dn = (0,7÷1,4) · 8=5,6÷11,2 мм

Принимаю dn=10 мм для быстрого и тихоходного валов по ГОСТ 9150–59

7. Первый этап компоновки редуктора.


Компоновочный чертеж выполняется в одной проекции - разрез по осям валов при снятой крышке редуктора в масштабе 1:1.

Примерно посредине листа параллельно его длиной стороне проводим горизонтальную осевую линию, затем две вертикальные линии - оси валов на расстоянии aω=180 мм.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.