Рефераты. Проект автоматизации сухой газоочистки

-  реализация взаимных блокировок между технологическим оборудованием установки при пуске и во время работы с глиноземом, а при крайней необходимости возможность их временного исключения оператором;

-  реализация автоматического прекращения подачи глинозема в работающую остановку при возникновении аварийного состояния от неисправности какого-либо технологического механизма или агрегата установки (по трактам подачи глинозема);

-  выявление предупредительных, аварийных ситуаций в работающей установке, их архивирование и гарантированное оповещение (звуковой сигнал, лампа сигнализации) о предупредительном или аварийном событии оператора для принятия решения. Обеспечение отключения звукового сигнала оператором.

-  архивирование текущих эксплуатационных и технологических параметров  установки;

-  информационная поддержка при расследовании причин аварийных и нештатных ситуаций, анализ общих тенденций и эксплуатационных характеристик, как отдельных механизмов и агрегатов, так и технологического процесса в целом в заданных интервалах времени за счет автоматического документирования получаемых данных и обеспечения режимов просмотра архивов.

3Технологическое оборудование, режимы управления  технологическим оборудованием, автоматические контура регулирования и блокировки установки

 

3.1           Аппаратурно-технологическая схема


Аппаратурно-технологическая схема «сухой» очистки газов (см. черт. 112-4670.110.311-АП.3 листы 1,2,3 проекта ОАО «СибВАМИ») включает в себя следующее основное оборудование

-  расходные бункера свежего глинозема  – 2 шт.;

-  промежуточные бункера фторированного глинозема – 4 шт.;

-  модули очистки электролизных газов в составе «реактор - рукавный фильтр» с системами импульсной регенерации рукавных фильтров - 12 шт.;

-  дымососы – 6 шт.;

-  вентиляторы высокого давления – 2 шт.;

-  воздуходувки – 2 шт.;

-  систему распределения и транспортировки свежего и фторированного глинозема, включающую в себя секторные затворы с ножевыми заслонками (18 шт.), течки, аэрожелоба и камерные пневмонасосы (4 шт.).


3.2           Краткое описание технологического процесса очистки газа


Очистка электролизных газов, содержащих фтористые соединения, пыль нетоксичную, диоксиды серы и углерода, осуществляется по схеме реактор-рукавный фильтр ФРИА-1250.

В реакторе-адсорбере в режиме аэровзвеси, характеризующейся развитой поверхностью взаимодействия фаз, происходит процесс соединения фтористого водорода с оксидом алюминия. Одновременно происходит адсорбция оксидом алюминия полициклических ароматических углеводов. Кроме того, в рукавных фильтрах при прохождении очищаемых газов через слой глинозема, осевшего на материале рукавов фильтров, продолжается и завершается процесс очистки газов. Очищенные газы с помощью дымососов выбрасывается в атмосферу через дымовые трубы.

Электролизные газы, подлежащие очистке, по входным газоходам из цеха электролиза поступают в нижнюю часть реакторов-адсорберов (п.1) газоочистной установки, далее направляются в рукавные фильтры ФР1-ФР12 (п.2) и по выходным газоходам дымососами (поз. 3.1…6) выбрасываются в дымовые трубы (п.4).

Свежий глинозем из расходных бункеров свежего глинозема (п.5) посредством секторных затворов (поз. 7.1-1, 7.1-2, 7.2-1, 7.2-2) поступает в распределительные коробки (п.9) и далее раздающими аэрожелобами чистого глинозема (п.5) подается в реакторы-адсорберы (п.1). Потоком газа глинозем подхватывается и выносится в рукавные фильтры ФР1-ФР12 (п.2), где происходит разделение твердой и газообразной фазы, то есть глинозем  осаждается  на тканевых рукавах. При регенерации рукавов глинозем ссыпается на днища рукавных фильтров. Затем глинозем распределяется на две части. Одна часть потока с помощью секторных затворов (поз.7.1-1…6, 7.2-1…6) подается обратно в реакторы-адсорберы. Таким образом, осуществляется рециркуляция глинозема, обеспечивающая увеличение времени контакта глинозема с очищаемыми газами. Другая часть потока с помощью сборных аэрожелобов (п.16) подается в промежуточные бункера фторированного глинозема (п.17) и камерными пневмонасосами (п.18) направляется в прикорпусной силос фторированного глинозема.

Очищенный газ, как уже было сказано выше, с помощью дымососов выбрасывается в атмосферу.

Для обеспечения работы регенерации рукавных фильтров РФ1-РФ12, камерных пневмонасосов, пневмоаппаратов (поз. 18) необходим сжатый воздух давлением 0,5-0,8 МПа, который подводится от компрессорной станции (часть ТП).

Для обеспечения работы аэрожелобов, распределительных коробок, расходных и промежуточных бункеров, сборных бункеров рукавных фильтров используется воздух от вентиляторов высокого давления (поз.20) и воздуходувок (поз.19).


3.3           Контролируемое технологическое оборудование

 

3.3.1    Группы технологического оборудования установки.

Все контролируемые технологические параметры установки, регулирующие воздействия на исполнительные механизмы проекта автоматизации 112-4670.110.311-АП и силовые привода проекта 112-4670.110.311-ЭМ уточнены в процессе проектных работ, согласованы с Заказчиком и реализованы средствами контроллера ПЛК (шкаф ШУ) и станций распределенного ввода/вывода ЕТ200М (шкафы ЕТ/1Щ, ЕТ/2Щ, СУРФ1…4,  ШУД1,2,  ШМУ1,2).

Согласно схеме функциональной автоматизации 112-4670.110.311-АП.3 (листы 1,2,3) разработки ОАО «СибВАМИ» технологическое оборудование установки разбито на следующие группы:

Входной газоход в блоки реакторы- рукавные фильтры ФР1-ФР6:

-  клапаны присадки №3,4 (поз. 35.3, 35.4) – режимы работы местный/дистанционный/ автоматический, контроль готовности к управлению, работы, положения исполнительного механизма, крайних положений исполнительного механизма. Регулирование температуры электролизных газов на входе газоочистную установку в начале газохода 1 подсосом атмосферного воздуха исполнительными механизмами поз. 35.3  или 35.4 (открыть/закрыть);

-  контроль температуры электролизных газов в газоходе на входе в технологическое оборудование реактор – рукавный фильтр (ФР1-ФР3, ФР4-ФР6) – датчики температуры поз.2а-1…6;

-  клапаны с приводом МЭО (поз. 2-1YA1…6) из проекта силовое электрооборудование 112-4670.110.311-ЭМ1.1 лист 22 - режимы работы местный/дистанционный, контроль готовности к управлению, работы, крайних положений исполнительного механизма;

-  контроль разрежения в газоходе на входе в технологическое оборудование реактор – рукавный фильтр (ФР1-ФР3, ФР4-ФР6) – датчики разрежения поз. 3а-1…6.

Входной газоход в блоки реакторы- рукавные фильтры ФР7-ФР12:

-  клапаны присадки №1,2 (поз. 35.1, 35.2) – режимы работы местный/дистанционный/ автоматический, контроль готовности к управлению, работы, положения исполнительного механизма, крайних положений исполнительного механизма. Регулирование температуры электролизных газов на входе газоочистную установку в начале газохода 2 подсосом атмосферного воздуха исполнительными механизмами поз. 35.1  или 35.2 (открыть/закрыть);

-  контроль температуры электролизных газов в газоходе на входе в технологическое оборудование реактор – рукавный фильтр (ФР7-ФР9, ФР10-ФР12) – датчики температуры поз.2а-7…12;

-  клапаны с приводом МЭО (поз. 2-2YA1…6) из проекта силовое электрооборудование 112-4670.110.311-ЭМ1.1 лист 22 - режимы работы местный/дистанционный, контроль готовности к управлению, работы, крайних положений исполнительного механизма;

-  контроль разрежения в газоходе на входе в технологическое оборудование реактор – рукавный фильтр (ФР7-ФР9, ФР10-ФР12) – датчики разрежения поз. 3а-7…12.

Группа дымососов №1,2,3 (поз. 3.1, 3.2 и 3.3) с газоходами и  дымовыми трубами (блоки реакторы- рукавные фильтры ФР1-ФР3, ФР7-ФР9):

-  двигатели вентиляторов дымососов №1,2,3 (проект электроснабжения) - режим работы местный/дистанционный, контроль готовности к работе, включенного состояния, контроль тока нагрузки двигателя, формирование сигналов на разрешение работы дымососа, аварийного сигнала на отключение дымососа. Контроллер ПЛК имеет канал связи Modbus типа «ведущий» с физическим соединением типа PS485. Протокол Modbus, используемый аппаратами Sepam 1000+, является разновидностью RTU Modbus. Ведущий Modbus может быть связан с несколькими Sepam 1000+;

-  контроль температуры обмоток статора, сердечника статора двигателей дымососов №1,2,3 (фазы 1,2,3) – датчики температуры поз. 3.1а-1…6, 3.2а-1…6, 3.3а-1…6 (поставка комплектно с двигателем);

-  контроль температуры подшипников двигателей дымососов №1,2,3 – датчики температуры поз. 3.1а-7,8, 3.2а-7,8, 3.3а-7,8 (поставка комплектно с двигателем)

-  контроль вибрации двигателей дымососов №1,2,3 – датчики вибрации поз. 3.1а-14,15, 3.2а-14,15, 3.3а-14,15;

-  контроль температуры масла в ваннах опорных подшипников дымососов №1,2,3 - датчики температуры поз. 3.1а-9,10, 3.2а-9,10, 3.3а-9,10;

-  контроль температуры газов в газоходах перед дымососами №1,2,3 - датчики температуры поз. 3.1а-11, 3.2а-11, 3.3а-11;

-  контроль разрежения в газоходах перед дымососами №1,2,3 - датчики разрежения поз. 3.1а-12, 3.2а-12, 3.3а-12;

-  контроль давления в газоходах после дымососов №1,2,3 - датчики поз. 3.1а-13, 3.2а-13, 3.3а-13;

-  направляющие аппараты №1,2,3 (поз. 1д-12, 2д-12, 3д-12) – режимы работы местный/дистанционный/автоматический, контроль готовности к управлению, работы, положения исполнительного механизма, крайних положений исполнительного механизма. Регулирование разрежения в газоходах на входе в дымососы №1,2,3  управлением исполнительными механизмами поз. 1д-12, 2д-12, 3д-12 (открыть/закрыть);

-  клапаны с приводом МЭО на входе дымососов №1,2,3 (поз. 3-1YA2…3-3YA2) из проекта силовое электрооборудование 112-4670.110.311-ЭМ1.1 листы 22, 23 - режимы работы местный/дистанционный, контроль готовности к управлению, работы, крайних положений исполнительного механизма. Блокировка на пуск соответствующего дымососа при не закрытом положении соответствующего клапана;

-  предупредительная сигнализация при пуске дымососов №1,2,3;

-  контроль включенного состояния сигнальных огней дымовых труб дымососов №1,2,3 (из проекта управления сигнальными огнями дымовых труб);

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.