|
||
1 |
2 |
|
Палладий двухлористый PdCl2 |
0.1-0.5 |
|
Кислота соляная HCl (плотность 1.19г/см3) |
1-10мл/л |
|
Серебро азотнокислое AgNO3 |
|
2-5 |
Аммиак водный NH3H2O (25%-ный), мл/л |
|
10-15 |
Кислотность (оптимальная), рН |
1.5-2.5 |
|
Температура, оС |
18-25 |
18-25 |
Продолжительность, мин |
1-5 |
1-3 |
При применении раствора № 2 после активирования диэлектрик обрабатывают в растворе, содержащем 50 мл/л 25 %-го раствора аммиака.
Корректируют растворы активирования по данным химического анализа концентрированным раствором активатора.
В растворы активирования не должны попадать ионы железа (Fe3+), так как они окисляют металлические частицы палладия, разрушая центры катализа.
2.2. Химическое никелирование
2.2.1. Область применения и условия образования Ni – P–покрытий.
Химическое никелирование достаточно широко внедряется в гальванотехнику благодаря ценным свойствам покрытия: высокой равномерности, большой твердости, значительной коррозионной стойкости и износостойкости.
Химически осажденный никель обладает более высокими защитными свойствами из-за меньшей пористости, чем электрохимически осажденный никель, а также потому, что осадки, содержащие в своем химическом составе фосфор, более стойки к агрессивным средам, чем чистый никель.
Вследствие своих специфических свойств химическое никелирование находит применение во многих отраслях машиностроения и приборостроения для покрытия металлических изделий сложного профиля (с глубокими каналами и глухими отверстиями), для увеличения износоустойчивости трущихся поверхностей деталей машин; для повышения коррозионной стойкости в среде кипящей щелочи и перегретого пара; для замены хромового покрытия (с последующей термической обработкой химического никеля), чтобы использовать вместо коррозионно-стойкой стали более дешевую сталь, покрытую химическим никелем, для никелирования крупногабаритной аппаратуры, для покрытия непроводящих материалов, пластмасс, стекла, керамики и т.п.
Согласно современным представлениям, суммарный процесс химического никелирования включает в себя, по крайней мере, три реакции-
Механизм процесса химического никелирования очень сложен Согласно последним исследованиям [32], механизм реакций при химическом никелировании носит следующий характер.
Первой стадией процесса является реакция взаимодействия гипофосфита с водой. Эта реакция, протекающая на каталитической поверхности, заключается в замене водорода из связи Р – Н в молекуле гипофосфита на группу —ОН из воды. Реакция, описывающая это взаимодействие, выражается уравнением
(1)
Образующиеся при реакции электрон и адсорбированный атом водорода в условиях кислой и слабощелочной среды взаимодействуют с ионом водорода по реакции
Суммарная реакция взаимодействия гипофосфита с водой соответствует уравнению
(2)
В условиях щелочной среды (рН> 9) образующиеся при окислении гипофосфита в фосфит электрон и атом водорода из связи Р — Н, взаимодействуя с водой, приводят к молизации по типу электрохимической десорбции:
(3)
Учитывая, что вторая константа диссоциации нона фосфита достаточно велика, можно полагать, что молизация водорода непосредственно связана с диссоциацией этого иона. В этом случае реакция электрохимической десорбции может быть представлена уравнением:
(4)
Из уравнения наглядно видно, что процесс окисления гипофосфита водой приводит к снижению рН раствора. Снижение рН раствора может оказаться и результатом непосредственной нейтрализации иона Н2РО3- ионом ОН -.
При наличии в растворе ионов никеля электроны восстанавливают их до металла:
Суммарную реакцию восстановления ионов никеля гипофосфитом можнопредставить в виде следующих уравнений:
(5)
(6)
При протекании реакций (5) и (6) могут также идти реакции (2) — (4), которые приводят к снижению коэффициента использования гипофосфита.
Одновременно с восстановлением никеля протекает реакция восстановления гипофосфита до элементарного фосфора. Реакция, приводящая к образованию фосфора, связана с разрывом связей Р — Н, Р — О и Р — ОН в молекуле гипофосфита. Протекание указанной реакции может быть представлено следующим уравнением.
(7)
Суммарная реакция, включая и реакцию взаимодействия гипофосфита с водой, поставляющую электроны, выразится уравнением:
(8)
В соответствии с уравнением (7) экспериментально определяется установленная зависимость содержания фосфора в покрытиях от рН раствора, а именно увеличение количества фосфора в осадке с уменьшением величины рН.
Процесс образования Ni — Р-покрытий начинается самопроизвольно только на некоторых каталитически активных металлах. К их числу относятся никель, железо кобальт палладий и алюминий. Однако никелевое покрытие можно нанести и на другие металлы (например, на медь или латунь) если их после погружения в раствор привести в контакт с более электроотрицательным металлом, чем никель (например, с алюминием). В результате контактирования на поверхности покрываемого металла за счет работы возникающего при этом гальванического элемента образуется слой никеля, на котором далее продолжается процесс восстановления.
Для покрытия каталитически неактивных металлов (медь и ее сплавы) был предложен другой метод, который заключается в нанесении на покрываемую поверхность каталитически активного металла (например, палладия). Палладий наносится погружением деталей на несколько секунд в палладиевый раствор. Следует отметить, что на некоторых металлах вообще не удается получить никелевого покрытия. К таким металлам относится олово, свинец, кадмий, цинк, висмут и сурьма.
Многочисленными исследованиями установлено, что кислые растворы имеют некоторые преимущества по сравнению с щелочными большую устойчивость к высокой температуре, более высокую скорость протекания процесса и лучшее качество покрытий. Однако и щелочные аммиачные растворы представляют интерес в некоторых случаях.
Рис. 2. Влияние температуры на скорость образования покрытия.
Рис. 3. Влияние кислотности раствора на скорость образования покрытия.
Кислые растворы. Одним из основных факторов, определяющих процесс никелирования является температура Установлено, что при низких температурах процесс не будет проходить. Из рис. 2 видно, что восстановление никеля возрастает с повышением температуры и в растворах, нагретых до 98-99 °С, достигает максимальных значений.
Значительное влияние на процесс восстановления химического никеля оказывает кислотность раствора. В процессе никелирования происходит самопроизвольное подкисление раствора. Наилучшие результаты в отношении скорости восстановления никеля и качества покрытия получаются при рН 4.5—5.0 [33]. При понижении кислотности раствора до рН 6.0—6.5 скорость осаждения никеля увеличивается, однако поддержание рН на этом уровне затруднено, так как в ходе процесса образуются малорастворимые никелевые соединения (рис. 3).
При увеличении концентрации гипофосфита от 5 до 10 г/л скорость образования покрытия несколько возрастает, но при концентрации гипофосфита 30 г/л скорость образования покрытия снижается (рис. 3).
Рис. 4. Влияние концентрации гипофосфита натрия на скорость образования покрытия.
При исследовании растворов для никелирования с низким содержанием гипофосфита установлено, что изменение концентрации никелевой соли мало отражается на скорости процесса (рис. 4) Соли органических кислот (гликолевой, уксусной и лимонной) оказывают большое влияние на процесс восстановления, так как поддерживают рН при оптимальном значении и влияют на скорость восстановления никеля.
Некоторые исследователи [33] предлагают применять в качестве буферных соединений соли органических двухосновных насыщенных кислот (янтарной, малоновой и глутаровой). Многие работы показывают, что скорость восстановления никеля, а также и качество покрытия зависят в значительной степени от концентрации и природы буферного соединения.
Рис. 4. Влияние концентрации хлористого никеля на скорость образования покрытия.
В силу каталитической природы процесса ничтожные примеси в растворе могут оказывать значительное влияние на его течение. Посторонние вещества попадают в раствор в виде примесей к основным реагентам, и при корректировании раствора концентрация этих примесей может быть столь значительной, что вредно отразится на процессе. Данные исследования [31, 32, 34] показывают, что ничтожные количества ионов роданида и хлористого свинца (0,1 г/л) полностью прекращают процесс как в кислых, так и в щелочных никелевых растворах. Вредное влияние на процесс оказывают соли кадмия, причем в щелочных никелевых растворах в большей степени, чем в кислых никелевых. Присутствие в кислом растворе хлористых солей цинка, магния, алюминия, железа и натрия (до 0,1 г/л) не оказывает заметного влияния на процесс. При повышении концентрации хлористого железа до 3 г/л скорость процесса сильно снижается.
Кроме того, на процесс никелирования могут влиять вещества, образующиеся в результате окислительно-восстановительных реакций (фосфит и кислота) [35]. Так, ионы фосфита образуют нерастворимое соединение — фосфит никеля. Выпадение осадка плохо отражается на скорости процесса и качестве покрытия и затрудняет корректирование раствора. Выпадению фосфита никеля способствуют высокая температура и малая кислотность раствора.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
При использовании материалов активная ссылка на источник обязательна.