Рефераты. Нанесение и получение металлических покрытий химическим способом

Покрытие Со—Мо—Р. Для осаждения Со—Мо—Р-пленок применялся раствор, содержащий (г/л): хлористый кобальт 25—30, молибденовокислый аммоний 0.005—0,01, лимоннокислый натрий 80—100: гипофосфит натрия 15—20- хлористый аммоний 40— 50. аммиак (25 %-ный) до рН 9—9.5. температура 90 °С. Этот сплав рекомендуется использовать как ферромагнитный материал.

Покрытие Со—Мn—Р. Со—Мn—Р-сплав может быть получен из раствора следующего состава (моль/л), хлористый кобальт 0,2, хлористый марганец 0,1; гипофосфит натрия 0,5, малеиновокислый аммоний 0.3,  гликол 0,3; аммиак 0.3; рН 10,5; температура 80 °С.

Были получены блестящие Со—Мn—Р-покрытия, магнитные свойства которых сильно изменялись от присутствия марганца в осадке. Твердость по Виккерсу составляла  1500 МПа.

 

2.5. Химическое меднение


2.5.1. Свойства покрытия и условия образования


Наибольшее практическое значение приобрело химическое меднение в производстве печатных плат. Оно применяется для металлизации сквозных отверстий простых и многослойных двусторонних печатных схем. Серебро не используется для этой цели не только из-за высокой стоимости,  но и потому, что оно при  высокой  влажности  воздуха может мигрировать на поверхности пластмасс, особенно феноловых, вызывая нежелательный электронный эффект [45]. Поэтому за рубежом широко применяется производство всей печатной схемы с помощью химического меднения. В настоящее время некоторые металлические детали и изделия с успехом заменяются пластмассовыми, на которые наносят медь химическим способом в качестве токопроводящего подслоя наращивают ее электрохимически, а затем также электрохимически осаждают декоративное и коррозионно-стойкое никелевое, хромовое или другое покрытие. Металлизация пластмасс улучшает внешний вид изделии и предохраняет пластмассы от старения [39].

В радиоэлектронике подобная металлизация обеспечивает электростатическое и электромагнитное экранирование приборов и удовлетворяет основным требованиям,  предъявляемым к ним (например, к приборам СВЧ). При замене металлических деталей металлизированными тает массовыми деталями уменьшаются масса и себестоимость приборов и изделий поэтому металлизация пластмасс широко применяется в радиоэлектронике автомобилестроении, в производстве телефонных аппаратов, деталей велосипедов и т.п. В некоторых случаях медь химическим способом наносят на многослойную поверхность, состоящую из чередующихся слоев металла и диэлектрика. Иногда меднят сложные поверхности металл—полупроводник—диэлектрик. Спрос на медные зеркала заставляет искать рациональные методы меднения гладкой поверхности стекла.

Из-за расширения потребности в профилированных металлических изделиях, нуждающихся в покрытии, внимание уделяется и химическому меднению железа, стали, алюминия и некоторых других металлов. Кроме того, медь эластичнее полученного химическим путем никеля и химическое меднение может осуществляться на холоду. Химическое меднение используется в гальванопластике, а также для защиты отдельных участков стальных деталей при цементации [46].

В настоящее время существуют несколько теорий, объясняющих механизм процесса Процесс химического меднения основан на восстановлении меди из ее комплексной соли формальдегидом в щелочной среде по уравнению [45]:

                            (11)

Предполагается, что процесс меднения определяется двумя реакциями:

а) дегидрогенизации формальдегида:

                                                                (12)

б)   последующего восстановления Сu (II) водородом

                                                           (13)

Возможно, в реакции (13) участвует активный водород и даже атомный.

В последнее время высказывается мнение, что этот процесс носит каталитический и автокаталитический характер. Было установлено, что водород выделяется лишь в том случае, когда в растворе содержится кислород. После его удаления инертным газом выделение водорода прекращается. Отсюда можно сделать заключение что мы имеем дело с каталитическим окислением формальдегида кислородом:

Эта реакция при комнатной температуре заметно протекает лишь под влиянием катализатора, в данном случае — меди. Схема катализа:

Из этого следует, что на холоду металлическая медь не вызывает дегидрогенизации формальдегида и, следовательно, механизм восстановления Сu (II), предполагающий первой стадией именно дегидрогенизацию, маловероятен.

Предложен, кроме вышеуказанного, гидридный механизм, по которому на поверхности катализатора из формальдегида отщепляется отрицательный ион водорода Н- восстанавливающий Сu:

Для объяснения каталитического влияния металлической поверхности на процесс химического меднения предложена также электрохимическая теория, по которой на отдельных участках поверхности катализатора происходит катодное восстановление Сu(II) и анодное окисление СН3О. Катализатор служит для передачи электронов, переход которых от формальдегида к ионам меди затруднен.

 

2.5.2. Составы растворов химического меднения


Растворы химического меднения могут быть концентрированные (быстрого действия) и неконцентрированные (медленного действия). Концентрация солей двухвалентной меди, входящих в состав раствора, обеспечивает нужную скорость меднения.

Основным восстановителем является формальдегид, восстанавливающий медь на холоду. Как показывают исследования, скорость восстановления меди увеличивается с увеличением концентрации формальдегида, причем увеличение более значительно при небольших концентрациях СН3О. Кроме того, чем выше в растворе концентрация ионов меди, тем сильнее  влияние концентрации формальдегида на скорость процесса меднения. В качестве восстановителей можно применять гипофосфит и гидразин, но они менее удобны, так как их восстановительные свойства проявляются лишь при повышенной температуре.

Важно учитывать рН раствора Растворы, в которых Си (II) восстанавливается гипофосфитом или    гидросульфитом,    являются    обычно кислыми. Гидразин и формальдегид восстанавливают медь в щелочной среде. Восстанавливающая способность формальдегида увеличивается с повышением щелочности среды. Восстановление Сu (II) формальдегидом начинается лишь при рН> 11 и скорость восстановления увеличивается с повышением рН (рис. 11). Величина рН неконцентрированных растворов меднения обычно не ниже 12.0, а концентрированных — может быть 11.5.

Рис. 11. Зависимость скорости образования медного слоя от рН раствора: 1 – в присутствии соли никеля, 2 – без соли никеля.


Для растворения солей меди в щелочном растворе в нем должны присутствовать лиганды, которые связывают ионы меди в комплекс. С ионами меди образуют комплексы ионы гидроксила тартрата, оксалата карбоната, аммиак, глицерин, трилон Б и некоторые др. Комплексообразователи (лиганды) не только увеличивают растворимость солей меди в щелочной среде но и влияют на процесс восстановления ионов меди. Следовательно, вещества образующие прочные комплексы с ионами меди увеличивают устойчивость растворов химического меднения. Кроме того, комплексообразователи влияют на скорость каталитического восстановления меди и на физические свойства получаемого покрытия плотность, блеск, цвет и т.п. В качестве комплексообразователей и блескобразующих веществ могут быть использованы также аминоуксусные кислоты, этиленаминоуксусные кислоты. Самые распространенные комплексообразователи — тартраты   (сегнетова соль) и глицерин.

Для облегчения образования покрытия и улучшения сцепления в раствор меднения рекомендуется вводить различные поверхностно-активные вещества (смачиватели), типа препарата «Прогресс», уменьшающие поверхностное натяжение и облегчающие выделение водорода в виде малых пузырьков.

На основании промышленного опыта применения растворов химического меднения при металлизации диэлектриков и в производстве печатных плат рекомендуются растворы, составы которых представлены в табл. 8.

Таблица 8

Растворы химического меднения

Компоненты

Концентрация компонентов раствора

1

2

3

Медь сернокислая (кристаллогидрат)

.10-15

25-35

25-35

Сегнетова соль

50-60

150-170


Гидроксид натрия

.10-15

40-50

30-40

Натрий углекислый

.2-3

25-35

20-30

Трилон Б


 

80-90

Фомалин (40%-ный), мл/л

15-20

20-25

20-35

Тиосульфат натрия

0,005-0,001

0,002-0,003

 

Никель хлористый (кристаллогидрат)

.2-3

.2-3

 

Роданин

 

 

0,003-0,005

Моющее средство "Прогресс"

 

0,5-1,0

 

Калий железосинеродистый

 

 

0,1-0,15


Раствор 1 имеет скорость осаждения меди 0.8—1.0 мкм/ч при плотности загрузки 2—2.5 дм2/л. Раствор обладает высокой стабильностью но менее производителен из-за пониженной концентрации солеи меди.

Раствор 2 имеет скорость осаждения 2—4 мкм/ч при плотности загрузки 2—2.5 дм2/л. Раствор обладает большей производительностью, но меньшей стабильностью.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.