Рефераты. Комплекс геофизических исследований скважин Самотлорского месторождения для оценки ФЕС и насыщения к...

В нефтегазонасыщенных породах только часть порового про­странства занята водой, поэтому их удельное сопротивление больше, чем у пород водонасыщенных. Это увеличение оцени­вают параметром насыщения

Рн= ρнп/ρвп,

где ρнп — удельное электрическое сопротивление нефтенасыщенной породы; ρвп — удельное электрическое сопротивление водонасыщенной породы. Полезные ископаемые с электронной проводимостью (руды, графит, антрацит) идентифицируют по минимумам удельного сопротивления, а их содержание оценивают по соответствую­щим корреляционным зависимостям.

Кажущееся электрическое сопротивление. Выше среда счи­талась однородной. Практически же она всегда имеет границы, искажающие вид поля. Например, наличие скважины, удельное сопротивление в которой ρс<ρп, деформирует поле. Кажущееся удельное электрическое сопротивление среды можно рассматривать как истинное удельное электрическое сопротивление однородной фиктивной среды, в которой при дан­ных геометрических размерах зонда, т. е. при данном коэффи­циенте зонда k и данном токе I, создается такая же разность потенциалов ΔU, как в изучаемой неоднородной среде.

В общем случае ρп = ρк из-за влияния скважины, вмещаю­щих пород, зоны проникновения и т. д. Суть метода КС за­ключается в том, чтобы зарегистрировать одну или несколько диаграмм ρк и, воспользовавшись методами интерпретации для учета влияния названных выше факторов, определить истин­ное значение удельного электрического сопротивления ρп.

Зонды КС применяют для литологического расчленения раз­резов, выделения полезных ископаемых-—руд, водоносных и нефтегазоносных коллекторов.

Боковое каротажное зондирование

В общем случае зна­чение ρк, как уже говорилось, зависит не только от ρп, но и от длины зонда L, его расстояния до границы пласта , мощности пласта, диаметра скважины, диаметра зоны проникновения, сопротивления скважинной жидкости ρс и некоторых других параметров. Изменяя длину зонда, можно изменять степень влияния того или иного фактора на значение ρк. Например, для зонда очень малых размеров, в силу его малости и уда­ленности от стенок скважины, влияние ρп будет несуществен­ным и ρк ≈ ρс. Для большого зонда влияние ρп будет значи­тельно сильнее. Чем больше  длина зонда L (или отношение L/dс), тем сильнее влияние ρп и меньше влияние ρс.

Начиная с определенной оптимальной длины зонда L1, ρс, практически перестает влиять на показания, и для пласта с h>>L, можно считать ρк = ρп.  Даль­нейшее увеличение длины зонда не изменяет картины. Если увеличить шунтирующее влияние скважины, увеличив ρп  и сохранив прежнее ρс, то для выполнения условия ρк ≈ ρп  по­требуется зонд большей оптимальной длины L2. Семейство графиков, отражающих зависимость от длины зонда L, называют палеткой. Шифр графика — отношение ρп/ ρс =μ, — именуют его модулем. При значениях μ >20 применять зонды оптимальной длины, как пра­вило, не удается, так как они оказываются соизмеримы с мощ­ностью пластов или больше нее. Однако для определения ρп достаточно провести измерения ρк несколькими' зондами разной длины, меньшей чем оптималь­ная. Полученные при этом точки с координатами lgρк —lgL ля­гут на тот график палеточного семейства зависимостей lgρк / ρс —lgL/dс, модуль которого μ, соот­ветствует искомому значению ρп. Определив μ, легко можно найти ρп: ρп = μ/ ρс. Такую методику на­зывают боковым каротажным зондированием (БКЗ).

Существуют альбомы палеточных зависимостей, предназ­наченные для интерпретации ма­териалов в пластах большой и ограниченной мощности, а также при наличии зоны проникновения. Разработаны алгоритмы и программы, автоматизирующие процесс интерпретации БКЗ. Методом БКЗ исследуют разрезы с целью детального изучения пластов и получения их количе­ственных характеристик (в первую очередь коэффициента пористости  и коэффициента нефтенасыщенности). Обычно БКЗ проводят только в продуктивном участке разреза.

Боковой каротаж

Каротаж сопротивления обычными зондами неэффективен в случае тонкослоистого разреза со значительной дифференциа­цией пластов с низким и высоким сопротивлениями и скважины, заполненной высокоминерализованным глинистым раствором. Из-за утечки тока в пласты с низким сопротивлением в пер­вом случае и из-за утечки тока по скважине во втором случае регистрируют кажущиеся сопротивления пород, намного отли­чающиеся от истинных. Основное отличие бокового каротажа (метода экранированных зондов) от каротажа сопротивления с обычными зондами состоит в том, что в рассматриваемом ме­тоде осуществляется фокусировка тока, выходящего из цен­трального электрода, вследствие чего влияние скважины и вме­щающих пород сказывается на результатах измерений значи­тельно меньше.

Боковой каротаж (БК) проводят трех-, семи- и девятиэлектродными зондами с автоматической фокусировкой тока.

Трехэлектродный экранированный зонд. Аппа­ратура АБКМ, Э1. Зонд состоит из центрального электрода А0 и двух цилиндрических удлиненных фокусирующих электро­дов А1 и А2. Все они разделены между собой изоляционными прокладками и питаются током одной полярности. Равенство их потенциалов обеспечивается тем, что основной электрод че­рез незначительное сопротивление накоротко соединяется с эк­ранными электродами. Поскольку разность потенциалов между электродами равна нулю, то сила тока вдоль оси скважины на этом интервале также равна нулю. Ток из электрода А0 рас­пространяется в радиальном направлении перпендикулярно к оси скважины, а не вниз и вверх по скважине во вмещающие, более проводящие породы.

Разность потенциалов ΔUкс измеряют между центральным электродом (экранным электродом, так как UА = UА = UА и электродом, удаленным от зонда на значительное расстояние. Кажущееся удельное сопротивление для трехэлектродного экра­нированного зонда рассчитывают по формуле

ρк =К ΔUкс/I0

где I0— сила тока, протекающего через центральный электрод A0; К — коэффициент зонда,

K=2,73 L/lg(2Lоб/dз)

где L, — длина основного электрода A0; Lобобщая длина зонда; dздиаметр зонда.

Точку записи относят к середине электрода А0.

Семиэлектродный экранированный зонд. Зонд состоит из центрального токового электрода А0, двух пар следящих электродов M1,N1 и M2, N2 одной пары фокусирующих (экранных) электродов A1 и A2. Три пары электродов замкнуты накоротко между собой и располо­жены симметрично относительно центрального электрода A0. Через электрод A0 пропускают ток I0, сохраняемый постоянным по величине в процессе записи кривой. Через экранные элек­троды A1 и A2 пропускают ток, сила которого автоматически регулируется так, что разность потенциалов между следящими электродами M1,N1 и M2, N2 остается постоянной и практически равной нулю.

Разность потенциалов ΔUкс измеряют между измеритель­ными (следящими) электродами зонда M1 и N1 (М2 и N2) и электродом N. расположенным от зонда на далеком расстоя­нии.

Точку записи относят к центральному электроду A0; за длину зонда принимают расстояние между серединами интервалов М1N1 и М2N2. Расстояние между серединами экранных электро­дов называют общим размером зонда А1A2 = Lоб, а отношение (Lоб — L)/L — параметром фокусировки зонда.

Девятиэлектродный экранированный зонд. Зонд используют в двух модификациях: нормализованный зонд и псевдобоковой. При расположении дополнительных экранных электродов В1 и В2 между основными экранными электродами A1, A2 и измерительными N1, N2 электродами радиус исследо­вания девятиэлектродным зондом резко увеличивается по срав­нению с семиэлектродным зондом в пластах большой мощности. При псевдобоковом варианте  два дополнительных экранных электрода В1 и В2 располагаются с внешней стороны семиэлектродного зонда симметрично отно­сительно центрального электрода A0. В результате распреде­ления токовых линий электрода A0 значительная часть потенциала падает в непосредственной близости от стенки скважины и измеряемое значение зависит в основном от удельного сопро­тивления близлежащей к стенке скважины части пласта.

Кривые кажущегося сопротивления, зарегистрированные эк­ранированными зондами, симметричны относительно середины пласта и по форме напоминают кривые КС обычных потенциал-зондов.

Границы пластов высокого сопротивления для трехэлектрод-ных зондов определяются по началу максимального возрастания ρк. Для многоэлектродных зондов границы таких пластов нахо­дят следующим образом: от точек с максимальным градиентом ρк (половина высоты аномалии против пласта) в сторону вме­щающих пород в масштабе глубин откладывают отрезки, рав­ные расстоянию A0O.

Для одиночных однородных пластов минимальное в случае пласта низкого сопротивления и максимальное в случае пласта высокого сопротивления ρк принимают за значения кажущегося сопротивления, снимаемого с диаграмм. В случае неоднородного пласта берут среднее значение ρк.

Глубина исследования экранированными зондами зависит от типа зонда и параметра его фокусировки. Наибольшей глубин­ностью обладают семиэлектродные зонды. Глубинность иссле­дования возрастает с увеличением Lоб  и q. С их увеличением уменьшается влияние скважины и зоны проникновения филь­трата промывочной жидкости, но возрастает влияние мощности: пласта на  ρк, т. е. уменьшается разрешающая вертикальная спо­собность зонда. Для сравнения, при измерениях с трехэлектродным зондом влияние мощности начинает ощущаться в пластах с   h < 0,8—1,2 м, с семиэлектродным с h < 1,2—6 м. Наиболее благоприятное условие для применения экранированных зон­дов— наличие в скважинах промывочной жидкости с низ­ким  ρк.

Индукционный каротаж

Изучение разрезов скважин индукционным методом основано на различии в электропроводности горных пород - величине, обратной удельному электрическому сопротивлению. Первоначально метод разрабатывался для исследования скважин, заполненых не проводящим электрический ток буровым раствором (на нефтяной основе), в котором обычно метод КС или метод экранированного заземления, имеющие систему токопроводящих  и измерительных электродов, применены быть не могут. Однако в последующем были обнаружены существенные преимущества индукционного метода при изучении геологических разрезов низкого сопротивления в скважинах, заполненных обычным токопроводящим буровым раствором.


Рис. Принципиальая схема индукционного метода. 1-скважиный снаряд-зонд; 2-излучающая катушка; 3-приемная катушка; 4-генератор; 5-усилитель и выпрямитель; 6-кабель; 7-регистрирующий прибор

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.