Рефераты. Электроснабжение механического цеха машиностроительного завода

Smax,кВар

Шлифовальные

станки

315

-

44,1

66,1

-

-

-

-

-

Обдирочные

Станки типа РТ-341

175

-

30

22,8

-

-

-

-

-

Кран мостовой

38

-

19

28,5

-

-

-

-

-

Обдирочные станки типа РТ-250

168

-

28,5

21,6

-

-

-

-

-

Анодно-механические станки типа МЭ-31

137,6

-

23,4

17,8

-

-

-

-

-

Анодно-механические станки типа МЭ-12

72

-

12,2

9,2

-

-

-

-

-

Вентилятор вытяжной

25

-

15

11,2

-

-

-

-

-

Вентилятор приточный

28

-

17

12,7

-

-

-

-

-

Итого:

959

8

170

190

6

2,24

381

209

255

2.2 Расчет и выбор компенсирующего устройства


Передача значительного количества реактивной мощности из энергосистемы к потребителям нерациональна по следующим причинам: возникают дополнительные потери активной мощности и энергии во всех элементах системы электроснабжения, обусловленные загрузкой их реактивной мощностью, и дополнительные потери напряжения в питательных сетях. Ввод источника реактивной мощности приводит к снижению потерь в период максимума нагрузки в среднем на 0,081 кВт/квар. В настоящее время степень компенсации в период максимума составляет 0,25 квар/кВт, что значительно меньше экономически целесообразной компенсации, равной 0,6 квар/кВт.

При выборе средств компенсации реактивной мощности в системах электроснабжения промышленных предприятий необходимо различать по функциональным признакам две группы промышленных сетей в зависимости от состава их нагрузок: первая группа - сети общего назначения (сети с режимом прямой последовательности основной частоты 50 Гц.); вторая группа – сети со специфическими нелинейными, несимметричными  и резко переменными нагрузками.

Наибольшая суммарная реактивная нагрузка предприятия, принимаемая для определения мощности компенсирующей установки равна: QM1=KHCQP, где KHC – коэффициент учитывающий несовпадения по времени наибольшей активной нагрузки энергосистемы и реактивной нагрузки предприятия.

По входной реактивной мощности QЭ1 определяют суммарную мощность компенсирующего устройства предприятия, а по назначению QЭ2 регулируемую часть компенсирующего устройства.

Суммарную мощность компенсирующего устройства QЭ1 определяют по балансу реактивной мощности на границе электрического раздела предприятия и энергосистемы в период наибольшей активной нагрузки энергосистемы: QK1=QM1+QЭ2. Для промышленных предприятий с присоединяемой суммарной мощностью трансформаторов менее 750 кВ*А значение мощности компенсирующего устройства QЭ1 задается энергосистемой и является обязательным при выполнении проекта электроснабжения предприятия.

По согласованию с энергосистемой, выдавшей технические условия на присоединение потребителей, допускается принимать большую по сравнению с QЭ1 суммарную мощность компенсирующего устройства, если это снижает приведенные затраты на систему электроснабжения предприятия в целом.

Средствами компенсации реактивной мощности являются в сетях общего назначения батареи конденсаторов (низшего напряжения – НБК и высшего напряжения – ВБК) и синхронные двигатели в сетях со специфическими нагрузками, дополнительно к указанным средствам, силовые резонансные фильтры (СРФ), симметрирующие и фильтросимметрирующие устройства, устройства динамической и статической компенсации реактивной мощности с быстродействующими системами управления (СТК) и специальные быстродействующие синхронные компенсаторы (ССК).


Компенсация реактивной мощности в электрических сетях общего назначения напряжением до 1000 В

К сетям напряжением до 1000 В. на промышленных предприятиях подключается большая часть потребителей реактивной мощности. Коэффициент мощности нагрузки низкого напряжения не превышает 0,8. Сети напряжением 380-660 В электрически более удалены от источников питания, поэтому передача реактивной мощности в сети низкого напряжения требует увеличения сечений проводов и кабелей, повышения мощности силовых трансформаторов и сопровождается потерями активной и реактивной мощностей. Затраты, обусловленные перечисленными факторами можно уменьшить или даже устранить, если осуществляется компенсация реактивной мощности непосредственно в сети низкого напряжения.

Источниками реактивной мощности в сети низкого напряжения являются синхронные двигатели напряжением 380-660 В. и конденсаторные батареи. При решении задачи компенсации реактивной мощности требуется установить оптимальное соотношение между источниками реактивной мощности низкого напряжения и высокого напряжения, принимая во внимание потери электрической энергии на генерацию реактивной мощности источниками низкого напряжения и высокого напряжения, потери электрической энергии на передачу QMAX.T из сети высшего напряжения в сеть низшего напряжения и удержание трансформаторной подстанции в случае загрузки их реактивной мощностью.

Выбор оптимальной мощности низшего напряжения батареи конденсаторов осуществляют одновременно с выбором цеховой трансформаторной подстанции. Расчетную мощность низшего напряжения батареи конденсаторов округляют до ближайшей стандартной мощности комплектных компенсирующих устройств. Основные технические характеристики нерегулируемой низшего напряжения батареи конденсаторов приведены в таблице, а регулируемые по току и напряжению.

Для каждой цеховой трансформаторной подстанции рассчитывают возможность распределения найденной мощности ПБК в цеховой сети. Критерием целесообразности такого решения является снижение приведенных затрат, обусловленное разгрузкой сети низшего напряжения от реактивной мощности.


Сущность cos φ.

Текущий коэффициент мощности в каждый момент времени:

,                                                (2. 8)

где и  - соответственно активная, кажущаяся и реактивная мощности в момент временник , кВт, кВ*А, квар..

Активная и реактивная мощности предприятий изменяются не только в течении длительных промежутков времени (суток, месяцев), но и в течении одной производственной смены.

Значение коэффициента мощности в момент времени ti наиболее точно определяется по фазометру. При отсутствии фазометра cos φ определяется одним из следующих способов:

1.                 двумя трехфазными ваттметрами или одним ваттметром с переключателем, изменяющим в некоторый момент времени P и Q определяет значение

,                                                            (2. 9)

затем по tg φ находится в таблице соответствующий ему

cos φi;

2.                 двумя ваттметрами измеряется активная мощность Р1 и Р2 и определяется

,                                                    (2. 10)

где Р1  и Р2 - показания ваттметра для фаз А и С соответственно;

3.                 амперметром, вольтметром и трехфазным ваттметром измеряют ток, напряжение и активная мощность. Затем находят

,                                                          (2. 11)

 где I, U и Р - соответственно действующие значения тока, напряжения и мощности, одновременно определяемые по приборам, А, кВ, кВт.

Оптимальный коэффициент мощности cos φ соответствует оптимальному

,

где РМ , QЭ - активная и реактивная мощности.


Расчет и выбор компенсирующего устройства.

                                                           (2. 12)

                  

                                                (2. 13)

                                       (2. 14)

                                    (2. 15)

                                                          (2. 16)

2.3 Выбор числа и мощности трансформаторов


Как и синхронные генераторы, они являются основным электрическим оборудованием, обеспечивающим передачу и распределение электроэнергии от электростанций к потребителям.

С помощью трансформаторов осуществляется повышение напряжение до величин (110, 220, 330, 500 кВ.), необходимых для линий электропередач энергосистем, а также многократное ступенчатое понижение напряжений до величин, применяемых непосредственно в приемниках электроэнергии (10; 0,3; 0,66; 0,38; 0,22; 0,127 кВ.).

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.