ВВЕДЕНИЕ
Создание энергосистем и объединение их между собой на огромных территориях стало основным направлением развития электроэнергетики мира в 20 веке. Это обусловлено отличительной особенностью отрасли, в которой производство и потребление продукции происходят практически одновременно. Невозможно накопление больших количеств электроэнергии, а устойчивая работа электростанции и сетей обеспечивается в очень узком диапазоне основных параметров режима. В этих условиях надежное электроснабжение от отдельных электростанций требует резервирование каждой станции, как по мощности, так и по распределительной сети.
Известно, что объединенная работа энергосистем позволяет уменьшить необходимую установленную мощность в основном за счет разновременности наступления максимумов электрической нагрузки объединения, включая и поясной сдвиг во времени, сокращения необходимых резервов мощности вследствие малой вероятности одновременной крупной аварии во всех объединяемых системах.
Кроме того, удешевляется строительство электростанций за счет укрупнения их агрегатов и увеличения дешевой мощности на ГЭС, используемой только в переменной части суточного графика электрической нагрузки. В объединении может быть обеспечено рациональное использование энергомощностей и энергоресурсов за счет оптимизации режимов загрузки различных типов электростанций.
Но главным преимуществом энергообъединения является возможность широкого маневрирования мощностью и электроэнергией на огромных территориях в зависимости от реально складывающихся условий. Дополнительное электросетевое строительство, связанное с созданием энергообъединений, не требует больших затрат, так как при их формировании используются в основном линии электропередачи, необходимые для выдачи мощности электростанций, а затраты на них с лихвой окупаются удешевлением строительства крупной электростанции по сравнению с несколькими станциями меньшей мощности. И, следовательно, только объединенная работа энергосистем позволяет обеспечить более экономичное, надежное и качественное электроснабжение потребителей.
Однако параллельная работа энергосистем на одной частоте требует создания соответствующих систем управления их функционированием, включая и противоаварийное управление, а также координации развития энергосистем. Это обусловлено тем, что системные аварии в большом объединении охватывают огромные территории и при современной «глубине» электрификации жизни общества приводят к тяжелейшим последствиям и огромным ущербам.
Поскольку электроэнергия «не складируется», при возникновении дефицита она не может быть свободно куплена на мировом рынке и доставлена в любое место, как и другие продукты и товары. Поэтому обеспечение надежного и экономичного электроснабжения требует заблаговременного начала строительства новых генерируемых источников и электрических сетей, так как энергетические объекты весьма дороги и трудоемки. При этом необходимо обеспечить рациональный состав этих источников по используемым энергоресурсам, их основным техническим характеристикам; их регулировочным возможностям в суточном, недельном и годовом разрезе, а также их размещение.
Для этого необходима координация развития энергосистем и энергообъединений путем прогнозирования, как на долгосрочную, так и на краткосрочную перспективу, которое должно периодически повторяться. Последнее обусловлено тем, что все исходные данные для прогнозирования весьма неопределенны даже в условиях плановой экономики страны. Очевидно, что в условиях рыночной экономики эта неопределенность многократно возрастает.
1. ОБЩАЯ ЧАСТЬ
1.1 Краткая характеристика электрооборудования ТП
Механический цех машиностроительного завода предназначен для серийного производства изделий. Для этой цели установлено основное оборудование: обдирочные, шлифовальные, анодно-механические станки и др.
На стороне 10 кВ трансформатора установлена ячейка КСО-366, с выключателем нагрузки, трансформатором тока и трансформатором напряжения. Так же установлены шины и изоляторы.
Защита от токов короткого замыкания на стороне 0,4 кВ выполнена автоматическими выключателями серии ВА51Г-25.
Распределительная сеть выполнена шинопроводом марки ШМА 73У3, двумя распределительными шинопроводами марки ШРА-4 и ШРА2, так же распределительным шкафом серии ПР85. Соединение с электроприемниками осуществляется проводами марки АПРТО. Соединение шинопроводов и распределительного шкафа осуществляется кабелями марки АПВГ.
Наименование
Количество
Pном,
кВт
Ки
Cos /
tg
ПВ, %
Pn,
Шлифовальные
станки
5
63
0,14
0,5/1,5
Обдирочные
Станки типа РТ-341
35
0,17
0,65/0,76
Кран мостовой
1
38
0,1
40
60
Обдирочные станки типа РТ-250
6
28
Анодно-механические станки типа МЭ-31
8
17,2
Анодно-механические станки типа МЭ-12
9
Вентилятор вытяжной
25
0,6
0,8/0,6
Вентилятор приточный
1.2 Ведомость электрических нагрузок
2. РАСЧЕТНО – ТЕХНИЧЕСКАЯ ЧАСТЬ
2.1 Определение электрических нагрузок от силовых потребителей.
Таблица 2.1 Исходные данные.
Рассчитываем среднесменную активную мощность: (2. 1)
Определяем коэффициент силовой сборки:
(2. 2)
Определяем средний коэффициент использования:
(2. 3)
Определяем сумму номинальных мощностей электроприемников: Определяем эффективное число электроприемников:
(.2. 4)
Определяем коэффициент максимума:
[1., с. 54, таб. 2.13]
Определяем максимальную активную мощность:
(2. 5)
Определяем среднесменную реактивную мощность:
(2. 6)
т.к. , то
Определяем полную максимальную мощность:
(2. 7)
Таблица 2.2 Расчетные данные.
∑Pном,кВт
m
Pсм, кВар
Qсм, кВар
nэ
Kmax
Pmax,
Qmax,кВар
Страницы: 1, 2, 3, 4, 5