Рефераты. Вариконды и их применение

Кроме того, иногда удобно пластины толщиной 0,2 мм и меньше (в обожженном виде) формовать рассмотренным выше способом тяжки, а для придания желаемой формы (пластины или диска) использовать метод штамповки.

2.2 Электроды для конденсаторов

В качестве электродов для керамических конденсаторов, начиная с того времени, когда подобные конденсаторы получили практические применение большей частью используют серебро, наносимое методом вжигания. В Европу эта техника возможно попала из Японии, где она издревле применяется для декодирования бытовой керамики. Этот традиционно применяемый способ вжигания серебра, под каким бы углом зрения его ни рассматривать, несомненно, остается одним из лучших, которому и сегодня, кажется, не видно замены. В последнее время в отдельных случаях пытаются использовать безэлектролизное гальваническое покрытие и другие способы, однако это, скорее, имеет целые понизить стоимость. Что же касается характеристик, то метод вжигания серебра не имеет себе равных. Кроме того, многие также считают хорошим метод напыления, однако ни по адгезии, ни по электрическим характеристикам электродов с методом вжигания серебра сопоставит, его нельзя. В последнее время также получили практическое применение многослойные конденсаторы, у которых электроды из драгоценных материалов, например из платины создаются между слоями керамики во время спекания. Для проведения вжигания серебра черный порошок окиси серебра (Ag2O) смешивают с 5--10 масс. % стеклянного порошка, называемого фриттой и содержащего боросиликат свинца, замешивают в связке, основными компонентами которой могут быть растворитель, смола, масло, и наносят на поверхность; при этом консистенция полученной пасты должна позволять мазать ее, как тушь. В массовом производстве для нанесения электродов на керамику используют технику печати. Если после нанесения пасты керамику нагреть до 500--800°С, то органические материалы разложатся и улетучатся, окись серебра восстановится и образует зерна серебра, фритта расплавится, создав плотное соединение зерен серебра с поверхностью керамики. Возможности конденсаторов в очень большой степени зависят от техники нанесения электродов. Иногда характеристики диэлектриков определяются характеристиками электродов.

Таблица 2.2. Составы фритт, %

В табл.2.2 приведены несколько составов фритт. Для изготовления фритты такие смеси загружают в керамические тигли, нагревают, полностью расплавляют, затем расплав охлаждают, выливая его из тигля вводу, полученный продукт измельчают в ступке. Помимо окиси серебра, иногда примешивают немного металлического или коллоидного серебра. Кроме того, нужно тщательно следить, чтобы в серебре не было хлористого серебра (AgCl) и натрия, так как эти материалы оказывают отрицательное влияние на влагостойкость конденсаторов.

При малом количестве образцов для экспериментов серебряную пасту можно наносить кисточкой, а при массовом производстве используют метод печати через трафарет и метод пульверизации. Если при вжигании серебра в период разложения органических материалов резко повышать температуру, то это окажет отрицательное влияние, в частности, на tg6 конденсаторов, что объясняется эффектом восстановления в процессе вжигания. На рис.2.1 показан пример режима подъема температуры при вжигании серебра.

В последнее время серебряная паста, а также проводящая паста из драгоценных металлов (Au, Pt, Pd), применяемых для многослойных конденсаторов, появились в продаже.

При слишком малой толщине электродов емкость конденсатора падает. Данное явление, очевидно, вызвано неровностями поверхности керамического диэлектрика, а также неодинаковым ее состоянием. В случае керамических конденсаторов на основе TiO2 это явление наблюдалось при толщине серебра менее 0,03 мкм и толщине алюминия менее 0,1 мкм. Эта разница, определяемая металлом, также, очевидно, может колебаться в зависимости от трудности напыления и умения пользоваться техникой, но, несомненно, следующее: если толщина электродов меньше некоторого предела, определяемого состоянием поверхности керамики и условиями напыления, то емкость снизится.

3. Основные применения

3.1 Возможные применения импульсных схем, управляемых с помощью варикондов

Применение варикондов для управления параметрами хронирующих цепей в импульсных схемах позволяет более полно использовать потенциальные возможности схем по расширению диапазона управления и увеличению чувствительности к управляющему напряжению. В результате применения варикондов характеристики схем приобретают реверсивные свойства и допускается телеметрическое и безваттное управление параметрами импульсов по различным законам во времени.

Особенно эффективны схемы с двойным управлением (и тройной регулировкой). В связи с этими преимуществами становятся возможными и некоторые новые применения импульсных схем.

Электронные схемы задержки импульсов типа спусковых схем и фантастропных генераторов могут быть использованы, например, в качестве:

1)преобразователей постоянного или медленно изменяющегося напряжения в импульсное, длительность импульсов которого соответствует заданным уровням напряжения. При этом чувствительность преобразования может достигать величины SU = 80?2700 мксек/в;

2) приборов для непосредственного измерения, сравнения или отбраковки нелинейных емкостей по реверсивным характеристикам методом эквивалентной задержки;

3)приборов для осциллографического наблюдения, исследования, измерения нестабильности пли пределов изменения постоянного пли медленно изменяющегося напряжения методом эквивалентной задержки и модуляции длительности импульсов, т.е. в качестве высокочувствительных малогабаритных датчиков систем допускового контроля;

4)схем функциональной задержки «с реверсом» после максимума по закону, близкому к линейному, экспоненциальному или параболическому, в зависимости от выбранного участка характеристики вариконда и т. д.

Импульсные генераторы, хронирующие цепи которых управляются с помощью варикондов, могут найти применение в качестве:

а)делителей частоты следования импульсов с переменным коэффициентом деления, управляемым по любому закону во времени;

б)чувствительных преобразователей времени в схемах шифраторов при импульсно-кодовой модуляции и схемах цифровых преобразователей времени счетных машин и, очевидно, во многих других случаях.

Простейшие цепи rCв типа дифференцирующих, интегрирующих и переходных при включении вместо линейной емкости варикондов, управляемых по заданному закону электрическим напряжением смещения, могут найти повое и широкое применение в астатических следящих системах каналов управления и в различных цепях обратной связи, где требуется изменение постоянной времени цепей в ходе слежения, или там, где необходимы управляемые коэффициенты передачи звеньев в цепях обратной связи, в каналах следящих систем и т. л.

Следует отметить, что исследование свойств и разнообразных применений варикондов подтверждает перспективность их использования в различной электрорадиотехнической аппаратуре, в том числе и в импульсных схемах. При этом несомненными оказываются возможности получения качественно новых характеристик в схемах с варикондами, как в ламповом, так и в полупроводниковом исполнении.

3.2 Возможности построения кодирующих устройств -- шифраторов

В современных импульсных шифраторах, использующих кодово-импульсную модуляцию с квантованием, преобразование мгновенных значений (уровней) напряжения, несущего информацию, или модулирующего напряжения в необходимый набор импульсов (код) осуществляется весьма сложными электронными схемами.

Для кодирования способам время-импульной модуляции требуются: делителе частоты следования импульсов, линии задержки, селекторные каскады совпадения, суммирующие усилители и нормирующие каскады, как правило, по числу n-значности кода, двоичного в простейшем случае. В таких шифраторах смена кода осуществляется механическим переключением ячеек линий задержки.

Для кодирования способом число-импульсной модуляции применяют преобразователи времени, основанные на методе сравнения напряжения входного сигнала, несущего информацию, c опорным. Обычно опорное напряжение вырабатывается фантастронными схемами, а сравнение выполняется на специальных схемах сравнения уровней -- временных модуляторах. В состав таких шифраторов входят генераторы измерительного (опорного) напряжения, схемы сравнения, вентили, каскады совпадения, вспомогательный и основной счетчики импульсов, преобразующие ряды импульсов в двоичный код.

Используя свойство варикондов изменять диэлектрическую проницаемость ?, а значит, и емкость Cв под действием внешнего электрического поля, можно предложить новый способ преобразования непрерывного сигнала Uвх (t) в группы импульсов, параметры которых будут однозначно соответствовать мгновенным уровням входного сигнала.

Ступень квантования в таком преобразователе будет определяться чувствительностью схемы к управляющему напряжению сигнала, т.е. крутизной характеристики преобразования и стабильностью работы устройства.

Высокая управляемость импульсных реверсивных характеристик варикондов и пленочном исполнении обеспечивает большую чувствительность схем с варикондами" к управляющему напряжению вместе с возможностью управления емкостью Cв = f(Uв) по любому закону во времени.

Например, если на вариконд, включенный в схему блокинг-генератора (или в спусковую схему), подавать дополнительно к постоянному напряжению смещения управляющее напряжение, переменное во времени, то можно получить модуляцию длительности импульсов или периода их следования по закону изменения емкости вариконда, определяемому характеристикой Cв = f(Uв) для данного действующего напряжения. Схема (рис.3.1) позволяет получить модуляцию импульсов спусковой схемы по длительности п соответствии с управляющим пилообразным напряжением, подаваемым на вариконд (в точку а схемы рис.3.1) от фантастронного генератора. В зависимости от величины начального постоянного смещения на вариконде, определяющего выбор рабочей точки на восходящей или нисходящей ветви характеристики tи=f(Eсм) можно получить нарастающую или убывающую по длительности серию импульсов спусковой схемы.

На рис.3.2,а показана осциллограмма напряжения (Ua2) на втором аноде лампы спусковой схемы рис.3.1, полученная при линейно изменяющемся управляющем напряжении Uy =-Kt. Вид модуляции, таким образом, определяется положением начальной рабочей точки на характеристике управления tи = f(Eсм), формой и полярностью переменного во времени управляющего напряжения Uy (t).

Если па входы селектора подать модулированные по длительности импульсы спусковой схемы (рис.3.2,а) и заполняющие импульсы основной частоты v3, кратные частоте запуска спусковой схемы и фантастрона v1=(1/n)v3, то на выходе селектора можно получись комбинации числа импульсов, соответствующие амплитуде, закону изменения управляющего напряжения и величине смещения на вариконде (рис.3.2,6).

Осциллограммы (рис.3.2) приведены для v1 = 500 гц, v3 = 4 кгц и амплитуды пилообразного напряжения фантастропа Uр макс = 40 в при tи = 5000 мксек.

Вариант схемы шифратора с селектором изображен на рис.3.3. Он является простейшим и составлен специально для примера из фантастрона и спусковой схемы. Несмотря на крайнюю простоту такого шифратора с варикондами, с его помощью можно получить весьма сложные и многочисленные комбинации кодов.

Опорный ряд импульсов частоты повторения vs поступает на один вход селектора, управляемого импульсами спусковой схемы с частотой следования

v1=(1/n)v3.

Фантастрон работает в режиме деления частоты так, что

v2=(1/m)v1

где n>m -- целые числа. Закон изменения числа импульсов в каждой кодовой группе (рис.3.2,б) обеспечивается пилообразным напряжением фантастрона и величиной Eсм на вариконде спусковой схемы (рис.3.1), изменяемой потенциометром rп1.

Длительность пилообразного импульса около 5000 мксек. На выходе спусковой схемы с варикондом длительность прямоугольных импульсов и период их следования изменяются во времени, как показано на рис.3.2,а.

При увеличении напряжения смещения Есм2 длительность импульсов спусковой схемы и их число за время действия модулирующего напряжения изменяются. Кроме того, с переходом после максимума на реверсивный участок характеристики управления изменяется и закон модуляции импульсов. Из спадающего по длительности ряд импульсов становится спадающе-нарастающим и, наконец, нарастающим по длительности.

Управляя напряжением смещения, амплитудой модулирующего напряжения и законом его изменения, можно получать различные комбинации групп импульсов с пилообразным, синусоидальным, экспоненциальным, ступенчатым и т.п. законами изменения длительностей импульсов в группе при односторонней или двусторонней модуляции.

Использовав импульсы спусковой схемы в качестве стробирующих для селектора, на выходе селекторного каскада получим кодовые комбинации нормированных по длительности импульсов. Число импульсов в кодовой

группе определяется длительностью соответствующего импульса спусковой схемы и изменяется в пределах кодовой пачки по закону модуляции длительности стробирующих импульсов во времени (рис.3.2,б).

На этом принципе можно построить различные варианты шифраторов, у которых управление параметрами кодовых групп будет выполняться раздельно или одновременно:

-- по числу импульсов в кодовой группе nгр;

-- по числу групп импульсов в пачке кода Nгр;

-- по периоду следования кодовых групп в пределах пачки Tгр;

-- по периоду следования импульсов кода в группе Tи;

-- по закону изменения указанных параметров кода во времени от пачки к пачке Uy (t).

Так, например, вместо пилообразного напряжения фантастрона в схеме (рис.3.3) можно использовать синусоидальное напряжение управляемой частоты и амплитуды.

Если перед селектором поставить еще и блокинг-генератор с варикондом, управляемый тем же (или другим) модулирующим напряжением, то будет изменяться частота следования импульсов в кодовой группе. Можно в фантастрон включить вариконд по схеме с двойным управлением (рис.3.4) и изменять дополнительно период следования пачек кодовых групп по нужному закону во времени и т.д.

Таким образом, предлагаемый способ электрического управления параметрами импульсного кода при весьма простом схемном осуществлении может обеспечить независимое или согласованное одновременное изменение по крайней мере четырех параметров последовательности импульсов. Описанный выше вариант шифратора является простейшим.

Источник анодного напряжения Eа=+300 в имел ионную стабилизацию. При замене генератора, обеспечивающего частоту v3 = 4 кгц, калибратором дистанций 27-И частота v3 была равна 15 кгц, причем шифратор работал так же стабильно, как при v3 = 4 кгц.

Разрешающая способность шифратора по схеме рис.3.3 достаточно высокая и может характеризоваться величиной ступеньки квантования порядка 0,36--3 в в зависимости от величины постоянного смещения на вариконде,определяющего чувствительность схемы с варикондом БК4--524пф. Потенциальная величина разрешающей способности схемы кодирования, очевидно, будет определяться чувствительностью схемы временного преобразователя (в данном случае спусковой схемы с варикондом) к управляющему напряжению и стабильностью работы схемы.

В зависимости от конкретных технических условий может быть составлена соответствующая схема шифратора, обеспечивающая управление необходимыми параметрами кодовых групп.

Исследование принципов построения кодирующих устройств с управляемыми параметрами, рассмотрение количественных характеристик возможных комбинаций кодов и анализ статистических данных шифраторов ограничивает круг вопросов, представляющих самостоятельную тему, несомненно актуальную для практического применения в различных устройствах телеметрической и связной аппаратуры.

В качестве некоторых возможных применений такого способа кодирования можно указать следующие:

1)для использования в системах опознавания с дистанционным управлением кодом;

2)для кодированной передачи уровней напряжения, несущего информацию;

3)для телеметрического управления;

4)для радиотелеграфной и импульсно-телеграфной связи;

5)для цифровых вольтметров и т. п.

Спусковая схема или другая схема, управляемая через вариконд, выполняющая роль преобразователя «напряжение--время», может использоваться в цифровых счетных машинах в качестве преобразователя времени. Для этого выход селектора нужно подключить к обычному регистру или триггерному счетчику на необходимое число разрядов двоичного кода. В этом случае код на выходе селектора будет состоять из одной группы импульсов с периодом повторения Tи2= l/v2, число импульсов в которой будет пропорционально амплитуде управляющего напряжения на вариконде, а на выходе счетчика это число будет закодировано двоичным кодом. Модулятор (фантастрон) при этом не нужен.

Вывод

Одним из перспективных направлений развития импульсной техники является использование новых, преимущественно нелинейных, радиотехнических приборов и материалов, позволяющих разрабатывать импульсные схемы и устройства, основанные на ранее неизвестных эффектах, обеспечивающих получение принципиально отличных способов управления параметрами импульсов и более эффективных количественных характеристик импульсных схем.

Вариконды как нелинейные емкости, созданы на основе сегнетокерамики. Они являются представителями новых радиотехнических приборов, а их применение в качестве электрически управляемых безынерционных чувствительных элементов импульсных устройств до сих пор исследовано недостаточно и весьма слабо освещено в технической литературе.

Широкое внедрение импульсных методов и устройств в радиолокацию, телемеханику, автоматику, вычислительную технику, аппаратуру систем автоконтроля и автоматического управления делает весьма актуальной проблему эффективного и быстрого использования новых технических возможностей, предоставляемых вариконда ми для электрического управления характеристиками импульсных схем в ламповом, транзисторном и микромодульном исполнении.

Применение варикондов в качестве электрически управляемых чувствительных элементов импульсных схем позволяет:

а)получать качественно и количественно новые характеристики управления схемами, недостижимые в этих схемах с линейными конденсаторами;

б)увеличить чувствительность и диапазон управления параметрами импульсов в десятки раз при реверсивных (если необходимо) свойствах характеристик управления;

в)осуществлять автоматическое управление такими параметрами импульсов и схем, как длительность, период следования, коэффициент деления частоты, коэффициент пересчета и др.;

г)полностью использовать потенциальные возможности схем путем осуществления «двойного», «тройного» управления и т. д.

До настоящего времени наиболее существенными недостатками импульсных устройств, ограничивающими возможности применения импульсных генераторов, являются трудности в обеспечении высокой временной стабильности параметров импульсов и недостаточно широкий диапазон плавного управления ими по длительности и по амплитуде.

Литературa

1. Вариконды в электронных импульсных схемах. Под ред. В.Ю.Булыбенко. Издательство «Советское радио», 1971г.

2. Справочник по электротехническим материалам. Под ред. Ю.В.Корицкого, В.В.Пасынкова, Б.М.Тареева - Т.3. Энергоатомиздат, 1988г.

3. Окадзаки К. Технология керамических диэлектриков, Энергия, Москва, 1976г.

4. Вариконды ВК-2, ВК-4: www.155la3.ru/varikond.htm

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.