Рефераты. Вариконды и их применение

Из материала ВК-3 изготовляется несколько видов варикондов, конструкция которых аналогична конструкции варикондов из материала ВК-2, т. е. изделия представляют собой диски (отдельные или собранные в блок) диаметром 1--25 мм и толщиной 0,4--0,7 мм.

Благодаря такой толщине диска емкость вариконда достигает максимальной величины уже при напряжении U~ = 20?30 в.

Коэффициент реверсивной нелинейности варикондов из материала ВК-3 в слабом поле K??4, а при напряжении 20--30 в K?=8?10.

Заслуживает особого внимания возможность получения блоков из материала ВК-3 с высокой начальной емкостью. Эти блоки имеют высоту около 15--18 мм. Диаметр 25 мм, а начальные значения емкости вариконда ВКЗ-Б около одной микрофарады.

При увеличении переменного напряжения до 30--40 в емкость блоков ВКЗ-Б возрастает примерно еще в два раза, затем с дальнейшим увеличением напряжения снижается.

Приведенные здесь данные относительно характеристик варикондов ВК-3 являются предварительными.

Материал ВК-4. Температура Кюри TС = ±10°. Нелинейность этого материала высокая, коэффициенты K~ и N~ составляют соответственно 10--16 и 0,05--0,08, т. е. они выше, чем у ВК-1, и несколько ниже, чем у ВК-2. В то же время этот материал обнаруживает значительно более стабильные свойства в интервале температур 20--85°,чем материалы, рассмотренные выше. Его ?нач, ?макс и K~ изменяются в зависимости от температуры мало. При снижении температуры коэффициент нелинейности увеличивается и уже при -40°С K~ ?40?50 (рис.1.7).

Тангенс угла потерь материала ВК-4 в слабом поле около 0,01--0,03; при повышенных переменных полях (100--160 в/мм) он высокий и составляет 0,3--0,4. Удельное объемное сопротивление образцов из этого материала при температуре 100° С не ниже 1010 ом·см.

По нелинейным свойствам керамика ВК-4 лишь немного уступает керамике ВК-2. Величины ?нач и ?макс у этого материала меньше, чем у ВК-2. Как видно из рис.1.8, крутизна возрастающего участка кривой ?(Е~)для ВК-4 несколько меньше, чем для ВК-2; в соответствии с этим и напряженность поля ?макс для ВК-4 больше, чем для ВК-2.

Так же как из материала ВК-2,из материала ВК-4 изготовляются вариконды в серийном производстве.

Материал ВК-5.Он имеет самые высокие нелинейные свойства и самые высокие значения диэлектрической проницаемости ?макс из всех известных в настоящее время керамических еегнетоэлектриков. На рис.1.9 приведены зависимости диэлектрической проницаемости BaTiO3, ВК-1, ВК-2 и ВК-5 от напряженности переменного поля. Его коэффициент нелинейности K~ = 40?50, ?макс =80000?100000. Максимальное значение диэлектрической проницаемости материала ВК-5 достигается при напряженности поля Eмакс =80?100 в/мм.

По степени нелинейности могут быть сопоставлены характеристики керамики ВК-5 и известного сегнето-электрика ТГС.

Диэлектрическая проницаемость ТГС достигает максимума для низких частот при полях примерно 30 в/мм раньше, чем диэлектрическая проницаемость ВК-5.

Однако высокая нелинейность варикондов из материала ВК-5 сохраняется в более широком спектре частот, чем у ТГС.

Высокая степень нелинейности характеристик материала ВК-5 сохраняется в широком интервале температур, от точки Кюри до весьма низких значений.

При снижении температуры от комнатной до --(140?150)°С коэффициент нелинейности значительно увеличивается от 40--50 до 320--360.

Величина Eмакс несколько увеличивается при снижении температуры и уменьшается при повышении темпе ратуры выше 20°С. Для титаната бария, материалов ВК-2 и ВК-5 определялся коэффициент прямоугольности Kп петли гистерезиса. Установлена определенная связь между коэффициентами нелинейности и прямоугольности: чем выше K~ тем выше Kп Однако даже для материала ВК-5 коэффициент прямоугольности при комнатной температуре не превышает 60--65% и возрастает до 85% при весьма низких температурах.

Из материала ВК-5 изготовляются объемные образцы ограниченных размеров на номинальные значения емкости от 10 до 10000 пф.

Материал ВК-6. Он отличается от ранее рассмотренных материалов наиболее высокими значениями температуры Кюри ( TС = 200±20°С), низким значением начальной диэлектрической проницаемости (?нач = 400--500). Материал обладает высокими нелинейными и изоляционными свойствами. При температуре 100° С величина рv?1012 ом*см, т. е. такого же порядка, что и у технических образцов титаната бария. Специфической особенностью этого материала является высокая прямоугольность петли диэлектрического гистерезиса. Это открывает новые возможности использования варикондов в качестве запоминающих и логических элементов электронно-вычислительных машин. У материала ВК-6 K~= 20?50 при Eмакс = 500?700 в/мм, ?макс =10000?22000, коэффициент прямоугольности Kп = 0,85?0,94, насыщение поляризации достигается при Енас=1,5?2 кв/мм; величина полной поляризации, измеренной на участке насыщения при 3--5 Ес, равна 13--14 мкк/см2. При увеличении напряженности поля поляризация материала ВК-6 сначала возрастает медленно, затем, начиная с некоторого значения поля, равного 300--400 в/мм, очень быстро и далее достигает участка насыщения. Чем ниже температура, тем отчетливее проявляется участок слабого изменения Р.

При снижении температуры от +100 до --100° С форма петли гистерезиса, снятая в сильном поле, меняется мало, немного снижаются полная и остаточная поляризация, монотонно возрастает коэрцитивное поле, коэффициенты прямоугольности и нелинейности сохраняют высокие значения во всем исследуемом интервале температур.

Высокие значения напряженности поля насыщения, а также Емакс и Ес затрудняют использование объемных образцов из этого материала. Для снижения величины управляющих и переполяризующих напряжений вари-конды из материала ВК-6 изготовляются в виде тонких "ленок площадью от 1 до 100 мм2 и толщиной от 200 До 5--10 мкм. При изменении толщины от 1000 мкм для массовых образцов до 5--10 мкм для пленок практически остаются постоянными такие параметры, как спонтанная поляризация, ?нач, ?Tс , ?макс, коэффициент нелинейности и прямоугольности,коэрцитивное поле, поле насыщения и др.; при изменении толщины не происходит смещения температуры Кюри, не изменяется форма петли гистерезиса.

Применение пленочных варикондов вместо объемных образцов позволяет значительно снизить управляющие и переключающие напряжения.

Для лучших пленочных образцов ВК-6 толщиной 5--7 мкм три переменном напряжении Uмакс=8 в и управляющем напряжении U?=15 в коэффициент управляемости K?=15.

Как уже указывалось, при изучении электрических свойств нелинейной керамики ВК-2, ВК-5 и титаната бария была установлена корреляция между коэффициентами нелинейности и прямоугольности-. чем выше K~, тем выше Kп При температуре --150° С коэффициент прямоугольности материала ВК-5 Kп ?0,85. Форма петли гистерезиса керамики ВК-5 была близка к прямоугольной. Эти данные были использованы при создании материала ВК-6.

Измерение переключающих характеристик ВК-6 проводилось по методике, изложенной в работе ,и на установке, обеспечивающей получение импульсов длительностью до 10 мксек с фронтом нарастания импульса 0,1 мксек и выходным сопротивлением генератора rвых=10 ом. При воздействии электрического поля E=(4?5) Ес обеспечивается переключение пленок ВК-6 разных толщнн за очень короткое время 0,3--0,6 мксек, что сопоставимо со временем переключения монокристаллов ВаТiOз.

Вариконды из материала ВК-6 обеспечивают устойчивую сохранность записанной информации во времени. Самопроизвольный распад остаточной поляризации в образцах происходит в первые 2--3 мин после снятия поляризующего напряжения. При этом остаточная поляризация снижается на 10--15%. Периодические измерения основных параметров образцов при хранении их в течение года не показали заметных необратимых изменений в материале.

Материал ВК-7. В нем используется особое состояние нелинейных сегнетокерамических материалов; его температура Кюри ниже комнатной, и в нормальных условиях он находится в параэлектрическом состоянии. Основной характеристикой этого материала является реверсивная зависимость диэлектрической проницаемости от напряженности постоянного смещающего поля, измеренная в слабом переменном поле. Реверсивная зависимость ?(E?) ВК-7 проявляется в широком спектре частот и мало изменяется в интервале 1--10000 Мгц. (При более высоких частотах измерения не проводились). Это обусловлено тем, что в параэлектрической области не проявляется заметная дисперсия ? вплоть до инфракрасного диапазона волн. Начальное значение диэлектрической проницаемости ?нач = 2000?4000; при воздействии постоянного поля E?=3000 в/см ?нач снижается в 2--3 раза.

Диэлектрические потери вещества в параэлектрическом состоянии значительно ниже, чем в сегнетоэлектри-ческом состоянии; в широком спектре частот tgб у керамики ВК-7 почти на порядок ниже, чем у титаната бария и других сегнетокерамических материалов, предназначенных для изготовления варикондов. На рис.1.10 сопоставлены частотные зависимости tgб титаната бария и материала ВК-7, измеренные в слабом поле (заштрихованные области показывают возможный разброс значений tgб для этих материалов.

Для лучших образцов керамики ВК-7 tgб имеет следующие значения.

Частота, гц

103

106

107

108

109

1010

tgб

10·10-4

5·10-4

8·10-4

20·10-4

80·10-4

0,03--0,05

Сочетание достаточно низких потерь ВК-7 в области частот от мегагерц до СВЧ и хорошей управляемости диэлектрической проницаемости K??2 позволяет рекомендовать вариконды из материала ВК-7 для применения в области частот от единиц до тысяч мегагерц.

Параметры варикондов из материала ВК-7 достаточно сильно меняются при изменении температуры. При нагревании образцов от комнатной температуры в сторону высоких значений уменьшается ?, tgб и коэффициент управляемости, это является одним из наиболее серьезных недостатков материала ВК-7. Поэтому в практических схемах образцы должны быть термостатиро-ваны.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.