Рефераты. Методы прогнозирования финансовых показателей

27580

0,913825

30180,8333

1

4 кв. 2000 г.

30854

1,33035833

23192,2477

1

1 кв. 2001 г.

29147

0,912225

31951,547

1

2 кв. 2001 г.

26478

0,84359167

31387,2233

1

3 кв. 2001 г.

30159

0,913825

33003,0367

1

4 кв. 2001 г.

33149

1,33035833

24917,3468

1

1 кв. 2002 г.

32451

0,912225

35573,4605

1

 

         Можно предположить, что величина ошибки второго прогноза будет несколько ниже чем первого.

 

 

3. Прогноз методом скользящей средней и экспоненциального сглаживания.

         Для предсказаний значений временного ряда можно использовать более простую методику.

При расчете скользящей средней Ytnp c (m) все m значений параметра Y за m моментов времени учитываются с одинаковым весовым коэффициентом 1/m что   не   всегда  обосновано.   Для   прогнозирования   технико – экономических трендов момент времени, в котором наблюдалось значение параметра Y, играет решающее значение. Естественно предположить, что за­висимость во временных рядах постепенно ослабевает с увеличением перио­да между двумя соседними точками. Так, если зависимость прогнозируемою параметра Yt представляется более сильной от значения Yt-1, чем от Yt-s  то

наблюдениям временного ряда следует придавать веса, которые должны уменьшаться но мере удаления oт фиксированного момента времени t. Это обстоятельство учитывается в методе экспоненциального сглаживания. Таким образом, при вычислении .ко экспоненциальной средней используются лишь предшествующая экспоненциальная средняя и последнее наблюдение, а все предыдущие наблюдения игнорируются.

Например, пусть необходимо дать прогноз для t-=8 но данным следую­щего временного ряда: 1) методом скользящей средней для m=3, m =4$ 2) методом экспоненциального о сглаживания для   Методы прогнозирования финансовых показателей =0,2; 0,6.

 

1 кв. 1999 г.

24518

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.