г) y = a + b * ln x + e, - логарифмическая регрессия.
д) y = a + bx + ex2 + … + e, - параболическая регрессия.
Каждая из них, для оценки параметров строится на основе МНК. Его суть – подбирают параметры уравнения регрессии, исходя из минимальных квадратов отклонений экспериментальных данных и теоретических значений в уравнениях регрессии. Он включается в систему корреляционных уравнений. Получаемые этим методом оценки параметров должны обладать следующими свойствами:
1. Песьмицинностью, т.е. математические ожидания цен должны быть равны их истинным значениям, полученным их экспериментальным соответствиям.
2. Оценка параметров должна быть состоятельной, при росте объема наблюдений должна стремится к нулю.
3. Должны быть эффективными, должны иметь минимальную дисперсию по сравнению к другим оценкам.
3. Постановка и методы решения оптимизационных задач с многими критериями.
Очень часто приходится ставить и решать следующие задачи:
1) Максимизировать прибыль и связанный с ней доход предприятия,
Q1 – max P;
2) Минимизировать себестоимость (повышать рентабельность), Q2 – min S, Q3 max R;
3) Минимизировать численность работающих, Q4;
4) Максимизировать з.пл. рабочим, Q5 max
Как видим, множество критериев противоречащих друг другу. Как решить поставленную задачу с учетом моделей производства. Существует 4 метода решения таких задач:
1-ый метод. Метод анализа иерархий при принятии окончательных управленческих решений. Суть метода: точно написать дозированные коэффициенты (т.н. весовые) при принятии решения и распределения ресурсов по целям. Для этого потребуются вспомогательные сведения, такие как идеальная матрица сравнения, индекс согласованности решений, распределение согласно целям и иерархии.
------------
Идеальная матрица сравнения: Рассматриваются n-объектов (элементов экон. сис-мы) – з.пл., соц.страх., осн.фонды, численность. Каждый элемент находится во взаимодействии с другими. Обозначим p1,p2,… pn. Всего n-объектов. С этими элементами свяжем матрицу А. Аij, i–номер строки, j-номер столбца. Идеальной матрицей сравнения называется исходная матрица А, подчиненная 2-ум правилам:
1) если Аij = , то тогда Аji = 1/,
2) если суждение (относительно рассм. эл-ов) pi и pj таковы, что объект pi одинаков с объектом pj по важности, то элемент aij=1, а значит аji=1. В частности диагональный элемент аii=1. Матрица А отвечающая правилам 1) и 2) называется идеальной матрицей сравнения.
Индекс согласованности решений: Пусть дана матрица А и пусть дан вектор ; . -называется называется собственным вектором матрицы А, а число - собств. значением матрицы А, если выполняется условие , В принципе, для двух координат х1, х2 действие матрицы превращается в 2 действия – деформацию вектора и поворот на плоскости.
2-ой метод. Лексикографический метод стратегий.
3-ий метод. Метод идеальной точки (Оптимум Парретто).
4-ый метод. Метод мозговой атаки (коллективного распознавания).
4. Метод базовой точки в экономических системах.
К настоящему времени численные методы (приближенные методы) применяются тогда, когда переменных или критериев много.
В IXX столетии фр. Физик Ле Шателье открыл следующий принцип:
Б
Рис 2
А
Если же система находится в положении Б, то, при выведении ее по направлениям 1 и 2 (см. рис.2) система не вернется.
Лауреат нобелевской премии, Пригожин И., в 1989 году, используя принцип Ле Шателье, о том что всякая система непременно возвращается в зону устойчивого равновесия, открыл новый метод в экономике – метод базовой точки:
Пусть состояние экономического процесса зависит от ряда параметров. Целевая функция имеет следующий вид:
X A E
a1,a2,… ap – набор технических параметров, влияющих также на поведение целевой функции.
e1,e2,… em – набор стоимостных характеристик процесса, влияющих на поведение функции. Данная система широко применяется в настоящее время. Например, хорошо всем известная система налогообложения.
Множественная регрессия. Коэффициент эластичности.
Как правило, парной регрессией не обойтись, когда имеется группа взаимосвязанных признаков. Например, в модели участвуют след. хар-ки:
x1 – трудовые ресурсы, L
x2 – стоимость основных фондов, k
x3 – время, Т
x4 – зар. плата
x5 – средний возраст рабочего, и т.д.
Аналогично парной строится и множественная регрессия.
Сначала рассмотрим случай, когда один результативный признак у и фактор признак х1, х2,… хn.
Различают аддиктивную (суммарную) линейную множественную регрессию вида
И мультипликативную (в форме произведения)
Параметры модели есть т.н. эластичности модели. Они показывают на сколько %-ов изм. рез-т у при изменении на 1% фактор признака хi.
5. Идеальная матрица сравнений. Шкала сравнений.
При анализе интересующей нас структуры экономического объекта очень часто приходится принимать точные решения. Например, на поведение рыночной устойчивости предприятия (обеспечение максимального выпуска, связанного с ним дохода, в условиях инфляции, падения импорта, падения экспортных цен), нужно точно знать, сколько распределить средств, с учетом основных факторов производства на каждый из видов деятельности, зная цели.
Схема задачи следующая:
Страницы: 1, 2