Рефераты. Искусственный интеллект

            Традиционные системы искусственного интеллекта основаны на идеологии целеориентированного поведения типа шахматной игры, где цель обоих партнеров состоит в том, чтобы поставить мат другому ценой любых жертв. Не случайно именно шахматные программы оказались столь важными для отработки методов искусственного интеллекта.


Неотъемлемость рефлексии

            Стоит ли считать рефлексию неотъемлемой частью систем искусственного интеллекта? Иначе  говоря - должен ли “мыслящий” аппарат понимать, что он мыслит, и контролировать этот процесс?

            Ответом с технической точки зрения может служить следующее. Как и любая компьютерная программа, наделенная средствами самодиагностики и самоисправления (а такие средства уже становятся стандартном), т. е. средствами повышения надежности, системы искусственного интеллекта должны контролировать происходящие процессы - как внешние, так и внутренние. Однако, может показаться, что в этом смысле будет достаточным просто развитая структура обратных связей. Сразу надо оговориться, что под обратной связью следует понимать только ответную реакцию (или получение информации о ней) после какого-то конкретного действия системы. Обратная связь лишь предоставляет данные, информацию, но ни в коей мере не интерпретирует их. Норбертом Винером в книге “Кибернетика, или управление и связь в животном и машине” были приведены примеры нарушений нервной системы людей и их последствия. Так люди с нарушением системы ориентации собственных конечностей в пространстве (не чувствующие своих рук и ног, случай, когда конечности “немеют”) должны были визуально контролировать свои действия. Это было типичное нарушение обратной связи. Рефлексия же подразумевает анализ полученной картины. Математика - наука абстрактная. Любую предметную область, с которой работает математик, он описывает с помощью моделей, структура и сложность которых зависит от конкретных поставленных задач. Анализ функционирования собственной модели или модели “всей окружающей действительности” (в рамках поставленной задачи), контроль над ее состоянием, прогнозирование состояния - есть ни что иное, как реализация рефлексии. Рефлексия - есть некий метауровень. С применением языков высокого уровня, таких как язык Пролог, позволяющий формулировать цели и строить логические выводы достижимости этих целей, задача реализации рефлексии уже может быть частично решена. С их помощью можно построить некую метаструктуру, надстройку, некий метауровень, позволяющий оценивать поведение предыдущего. Однако, при рассмотрении термина “глубокая рефлексия” или “многоуровневая рефлексия” встает проблема построения моделей самой системой. Здесь на помощь могут приходят абстрактные типы данных. Они позволяют оперировать структурами данных любой конечной сложности. Таким образом можно считать, что системы искусственного интеллекта могут содержать модель рефлексии (математика оперирует только моделями).

            Это может быть ответом на вопрос “Можно ли машину заставить понимать, что она понимает?”, но не на вопрос о обязательном включении рефлексии. Попробуем ответить от противного: а можно ли отвергнуть рефлексию, можно ли считать интеллектуальную систему полноценной без умения оценивать, “понимать” свои действия? Думаю, что нельзя. Более того, рефлексию следует считать одним из главных инструментов построения поведения систем. Как ни забавно это звучит, но говоря самоконтроля и самопонимания, можно говрить о некоторой этике поведения системы.



Математическо-технические

аспекты реализации систем искусственного интеллекта


            С конца 40-х годов ученые все большего  числа  университетских  и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров,  действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума.

            Терпеливо продвигаясь вперед в своем нелегком труде, исследователи,  работающие в области искусственного интеллекта (ИИ),  обнаружили, что вступили в схватку с весьма запутанными проблемами, далеко выходящими за пределы традиционной информатики.  Оказалось, что прежде всего необходимо  понять механизмы процесса обучения,  природу языка и чувственного восприятия.  Выяснилось,  что для создания машин, имитирующих работу человеческого мозга, требуется разобраться в том, как действуют миллиарды его взаимосвязанных нейронов.  И тогда многие  исследователи пришли  к  выводу,  что пожалуй самая трудная проблема,  стоящая перед современной наукой - познание процессов функционирования человеческого разума,  а не просто имитация его работы. Что непосредственно затрагивало фундаментальные теоретические проблемы психологической  науки.  В самом  деле,  ученым  трудно даже прийти к единой точке зрения относительно самого предмета их исследований  -  интеллекта.  Здесь, как в притче о слепцах, пытавшихся описывать слона, пытается придерживаться своего заветного определения.

            Некоторые считают,  что интеллект - умение решать сложные задачи; другие рассматривают его как способность к обучению,  обобщению и аналогиям;  третьи - как возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого. Тем не менее многие исследователи ИИ склонны принять тест машинного интеллекта,  предложенный в начале 50-х годов выдающимся английским математиком и специалистом по вычислительной  технике Аланом Тьюрингом.  Компьютер можно считать разумным,- утверждал Тьюринг,- если он способен  заставить нас поверить, что мы имеем дело не с машиной, а с человеком.

Обеспечение взаимодействия с ЭВМ на естественном языке (ЕЯ) является важнейшей задачей исследований по искусственному интеллекту (ИИ). Базы данных, пакеты прикладных программ и экспертные системы, основанные на ИИ, требуют оснащения их гибким интерфейсом для многочисленных пользователей, не желающих общаться с компьютером на искусственном языке. В то время как многие фундаментальные проблемы в области обработки ЕЯ (Natural Language Processing, NLP) еще не решены, прикладные системы могут оснащаться интерфейсом, понимающем ЕЯ при определенных ограничениях.

Существуют два вида и, следовательно, две концепции обработки естественного языка:

·  для отдельных предложений;

·  для ведения интерактивного диалога.

 

Природа обработки естественного языка

Обработка естественного языка - это формулирование и исследование компьютерно-эффективных механизмов для обеспечения коммуникации с ЭВМ на ЕЯ. Объектами исследований являются:

·  собственно естественные языки;

·  использование ЕЯ как в коммуникации между людьми, так и в коммуникации человека с ЭВМ.

Задача исследований - создание компьютерно-эффективных моделей коммуникации на ЕЯ. Именно такая постановка задачи отличает NLP от задач традиционной лингвистики и других дисциплин, изучающих ЕЯ, и позволяет отнести ее к области ИИ. Проблемой NLP занимаются две дисциплины: лингвистика и когнитивная психология.

Традиционно лингвисты занимались созданием формальных, общих, структурных моделей ЕЯ, и поэтому отдавали предпочтение тем из них, которые позволяли извлекать как можно больше языковых закономерностей и делать обобщения. Практически никакого внимания не уделялось вопросу о пригодности моделей с точки зрения компьютерной эффективности их применения. Таким образом, оказалось, что лингвистические модели, характеризуя собственно язык, не рассматривали механизмы его порождения и распознавания. Хорошим примером тому служит порождающая грамматика Хомского, которая оказалась абсолютно непригодной на практике в качестве основы для компьютерного распознавания ЕЯ.

Задачей же когнитивной психологии является моделирование не структуры языка, а его использования. Специалисты в этой области также не придавали большого значения вопросу о компьютерной эффективности.

Различаются общая и прикладная NLP. Задачей общей NLP является разработка моделей использования языка человеком, являющихся при этом компьютерно-эффективными. Основой для этого является общее понимание текстов, как это подразумевается в работах Чарняка, Шенка, Карбонелла и др. Несомненно, общая NLP требует огромных знаний о реальном мире, и большая часть работ сосредоточена на представлении таких знаний и их применении при распознавании поступающего сообщения на ЕЯ. На сегодняшний день ИИ еще не достиг того уровня развития, когда для решения подобных задач в большом объеме использовались бы знания о реальном мире, и существующие системы можно называть лишь экспериментальными, поскольку они работают с ограниченным количеством тщательно отобранных шаблонов на ЕЯ.

Прикладная NLP занимается обычно не моделированием, а непосредственно возможностью коммуникации человека с ЭВМ на ЕЯ. В этом случае не так важно, как введенная фраза будет понята с точки зрения знаний о реальном мире, а важно извлечение информации о том, чем и как ЭВМ может быть полезной пользователю (примером может служить интерфейс экспертных систем). Кроме понимания ЕЯ, в таких системах важно также и распознавание ошибок и их коррекция.


Основная проблема обработки естественного языка

Основной проблемой NLP является языковая неоднозначность. Существуют разные виды неоднозначности:

·  Синтаксическая (структурная) неоднозначность: во фразе Time flies like an arrow для ЭВМ неясно, идет ли речь о времени, которое летит, или о насекомых, т.е. является ли слово flies глаголом или существительным.

·  Смысловая неоднозначность: во фразе The man went to the bank to get some money and jumped in слово bank может означать как банк, так и берег.

·  Падежная неоднозначность: предлог in в предложениях He ran the mile in four minutes/He ran the mile in the Olympics обозначает либо время, либо место, т.е. представлены совершенно различные отношения.

·  Референциальная неоднозначность: для системы, не обладающей знаниями о реальном мире, будет затруднительно определить, с каким словом - table или cake - соотносится местоимение it во фразе I took the cake from the table and ate it.

·  Литерация (Literalness): в диалоге Can you open the door? — I feel cold ни просьба, ни ответ выражены нестандартным способом. В других обстоятельствах на вопрос может быть получен прямой ответ yes/no, но в данном случае в вопросе имплицитно выражена просьба открыть дверь.

Центральная проблема как для общей, так и для прикладной NLP - разрешение такого рода неоднозначностей - решается с помощью перевода внешнего представления на ЕЯ в некую внутреннюю структуру. Для общей NLP такое превращение требует набора знаний о реальном мире. Так, для анализа фразы Jack took the bread from the supermarket shelf, paid for it, and left и для корректного ответа на такие вопросы, как What did Jack pay for?, What did Jack leave? и Did Jack have the bread with him when he left? необходимы знания о супермаркетах, процессах покупки и продажи и некоторые другие.

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.