Рефераты. Защита от средств слежения за автомобилями

Защита от средств слежения за автомобилями

Министерство образования Российской Федерации


Томский университет систем управления и радиоэлектроники

(ТУСУР)



Кафедра РЗИ



ЗАЩИТА ОТ СРЕДСТВ СЛЕЖЕНИЯ ЗА АВТОМОБИЛЕМ


Пояснительная записка к курсовой работе

по дисциплине «Инженерно-техническая защита информации»





Выполнили:

студенты группы 188

___________П.В. Дергачев

__________А.В. Дементьев

Руководитель:

Доцент каф. РЗИ

_____________А.П. Бацула





Томск

Реферат


Пояснительная записка, 48 страниц, 12 рисунков, 8 источников, 4 приложения СИСТЕМЫ АВТОМАТИЧЕСКОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ, GPS, ПЕЛЕНГАЦИЯ, НАВИГАЦИОННОЕ СЧИСЛЕНИЕ, СИСТЕМА ПОИСКА И СЛЕЖЕНИЯ, ДИСКО-КОНУСНАЯ АНТЕННА.

          Предметом данной курсовой работы являлось рассмотрение существующих систем и методов поиска, слежения, определения местоположения мобильных объектов. В работе были рассмотрены некоторые способы защиты от слежения и предложен собственный вариант защиты от слежения за автомобилем УАЗ – 462, на котором установлены скрыто GPS-приемник, принимающий сигнал со спутника и передатчик использующий канал сотовой связи.

          Работа выполнена в текстовом редакторе Microsoft Word 97.

Томский Государственный Университет Систем Управления и Радиоэлектроники


Кафедра радиоэлектроники и защиты информации




УТВЕРЖДАЮ

Зав. кафедрой РЗИ, профессор

_____________ В.Н. Ильюшенко

«____»_____________ г.


ЗАДАНИЕ

на курсовую работу

по дисциплине «Инженерно-техническая защита информации»


Тема работы   «Защита от средств слежения за автомобилями»


Исполнители – студенты гр. 188 Дергачев Павел Викторович, Дементьев Андрей Васильевич.

Цель работы: рассмотреть существующие системы и методы поиска, слежения, определения местоположения мобильных объектов, способы защиты от слежения, предложить собственный вариант защиты автомобиля УАЗ-462 при скрытой установке GPS-приемника и передатчика GSM.

Содержание:  В работе рассматриваются системы и методы поиска, слежения, определения местоположения мобильных объектов, оборудование для поиска и слежения, способы защиты от слежения, предлагается собственный вариант защиты автомобиля УАЗ - 462, в ходе рассмотрения которого производится расчет некоторых параметров функционирования данной системы.

Источники разработки:  1.- В.И. Андрианов, А.В. Соколов Автомобильные охранные системы – Санкт-Петербург, BHV Арлит, 2000 г. – 272 с.;2.- #"1.files/image001.jpg" align=left hspace=12>


Рисунок 1.3 – Метод инверсного приближения


Однако на практике чаще используется инверсный метод приближения (рис. 1.3): обнаружение и идентификация транспортных средств осуществляется с помощью установленных на них активных, пассивных или полуактивных мало­мощных радиомаяков, передающих на приемник контрольного пункта свой ин­дивидуальный код, или же с помощью оптической аппаратуры считывания и рас­познавания характерных признаков объекта, например, автомобильных номеров. Информация от контрольных пунктов передается далее в подсистему управления и обработки данных.

Очевидно, что для зоновых систем точность местоопределения и периодичность обновления данных напрямую зависит от плотности расположения контрольных пунктов на территории действия системы. Методы приближения требуют разви­той инфраструктуры связи для организации подсистемы передачи данных с боль­шого числа таких пунктов в центр управления и контроля, а в случае использова­ния оптических методов считывания — требуют и сложной аппаратуры, используемой на всех контрольных пунктах, и поэтому весьма дороги при постро­ении систем, охватывающих большие территории. В то же время, инверсные ме­тоды приближения позволяют минимизировать объем бортовой аппаратуры — радиомаяка, либо вовсе обойтись без устанавливаемой на автомашину аппаратуры. Основное применение данных систем — комплексное обеспечение охраны авто­машин, обеспечение поиска автомашин при угоне. Примером подобной системы является система КОРЗ, обеспечивающая фиксацию приближения угнанной обо­рудованной автомашины к посту—пикету ГИБДД. Во многих зарубежных странах зоновые системы функционируют уже длительное время, как для нужд диспетче­ризации общественного транспорта, движущегося по постоянным маршрутам, так и для нужд правоохранительных органов.[1]

1.3 Методы местоопределения по радиочастоте


Местоположение транспортного средства определяется путем измерения разно­сти расстояний транспортного средства от трех или более относительных позиций.

Данную группу методов можно условно разбить на две подгруппы:

Ø                 радиопеленгация (обобщенно), когда абсолютное или относительное местоположение подвижного объекта определяется при приеме излучаемого им радиосигнала сетью стационарных или мобильных приемных пунктов;

Ø                 вычисление координат по результатам приема специальных радиосигна­лов на борту подвижного объекта (методы прямой или инверсной радио­навигации).[1]

 

1.3.1 Методы радиопеленгации

С помощью распределенной по территории города сети пеленгаторов или с помощью мобильных средств пеленгации возможно отслеживание местоположе­ния объектов, оборудованных радиопередатчиками-маяками.

На практике метод пеленгации, как наиболее дешевый в начальные годы ста­новления систем спутниковой навигации (когда стоимость спутниковых прием­ников измерялась тысячами долларов), был опробован полицейскими и пожар­ными службами США и Канады. Результаты опытной эксплуатации системы показали, что ома может очень хорошо использоваться на открытой местности. Однако данная система имеет большие погрешности в условиях плотной городс­кой застройки. Кроме того, стоимость инфраструктуры, необходимой для охвата значительной площади, весьма велика. В настоящее время этот метод использует­ся очень редко.

Примером AVL-системы, основанной на методах радиопеленгации, можно счи­тать систему ГИПС (новое название — СКИФ). Принцип работы системы заключает­ся в следующем. Прием сигнала, излучаемого малогабаритным радиомаяком на под­вижном объекте, осуществляется сетью стационарных радиоприемных центров, и по полученным данным производится с помощью математических операций определе­ние местоположения автомашины с наибольшей вероятностью. Применение широкополосных сигналов с базой 103 –108 обеспечивает частоту обновления информации один раз в секунду в системе из 5000 объектов при высокой помехозащищенности. Точность местоопределения зависит от плотности размещения стационарной радио­приемной сети на территории города и может составлять единицы метров в режиме непрерывного слежения и корректировки данных по электронной карте.

Подобную систему с применением пейджеров двухсторонней связи и сети при­емопередающих станций предлагает фирма «МегаПейдж». Широкополосный пе­редатчик, установленный на автомашине, включается по сигналу стандартного пейджингового приемника либо по сигналу системы противоугонной сигнализа­ции. Определение местоположения передатчика осуществляется с помощью сети базовых станций пейджинговой системы.

Примером системы на базе мобильных пеленгаторов является хорошо извест­ная по телевизионным шоу-программам канала НТВ — система LoJack. Пеленга­торами данной системы оборудованы автомашины специального батальона дорожно-постовой службы ГИБДД и посты-пикеты ГИБДД на выезде из Москвы и ряда других городов.[1]


1.3.2 Методы радионавигации

Космическая радионавигация воплотила в себе новейшие достижения компь­ютерных и телекоммуникационных технологий. Симбиоз спутниковой системы позиционирования, современной радиосвязи и электронной картографии позво­ляет определять местоположение и скорость транспортного средства, вычислять расстояния, прокладывать маршруты и отслеживать их соблюдение, получать справки о картографических объектах. Сегодня работают две системы: американ­ская Navstar и отечественная ГЛОНАСС. Использование обеих систем позволяет более точно определять координаты и повышает надежность функционирования.

Методы на основе радионавигации реализуются в системах AVL на основе им­пульсно-фазовых наземных навигационных систем (типа LORAN-C, Чайка) и спут­никовых среднеорбитальных навигационных систем (СРНС) Navstar и ГЛОНАСС. Наилучшие точностные и эксплуатационные характеристики в настоящее время имеют спутниковые навигационные системы, в которых достигается точность местоопределения в стандартном режиме не менее 50—100 м, а с применением специальных методов обработки информационных сигналов в режиме фазовых определений или дифференциальной навигации — до единиц метров.

Самой известной является глобальная спутниковая радионавигационная система Navstar (Navigation System using Timing And Ranging) или GPS (Global Positioning System), созданная для высокоточного навигационно-временного обеспечения объектов, движущихся в космосе, воздухе, на земле и воде.

В ее состав входят навигационные спутники, наземный комплекс управления и аппаратура потребителей (пользователей). Применяемый в системе принцип состоит в том, что специальные приемники, установленные у потребителей, из­меряют дальность до нескольких спутников и определяют свои координаты по точкам пересечения поверхностей равного удаления.

Дальность вычисляется по формулам, известным из школьных учебников, пу­тем умножения скорости распространения радиосигнала на время задержки, при прохождении им расстояния от спутника до пользователя. Величина временной задержки определяется сопоставлением кодов сигналов, излучаемых спутником и генерируемых приемным устройством, методом временного сдвига до их совпаде­ния. Временной сдвиг измеряется по часам приемника. Координаты спутников известны с высокой точностью. Для нахождения широты, долготы, высоты, ис­ключения ошибок часов приемника достаточно решить систему из четырех урав­нений. Поэтому приемник пользователя должен принимать навигационные сиг­налы от четырех спутников.

Скорость определяется по доплеровскому сдвигу несущей частоты сигнала спут­ника, вызываемому движением пользователя. Доплеровский сдвиг (Doppler shift) замеряется при сопоставлении частот сигналов, принимаемых от спутника и ге­нерируемых приемником. Разумеется, все это происходит мгновенно и без какого либо участия пользователя.

Навигационные сигналы излучаются на двух частотах L-диапазона (полоса радиочастот 390-1580 МГц):

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.