Собственные значения оператора равны — 3 для синглетного и +1 для триплетного состояния. Поэтому оператор рБ может быть представлен в виде
Представим аналогичным образом операторы Майорана и Гей- зенберга. Поскольку компоненты операторов и тождественны, можно утверждать, что оператор () имеет, как и оператор (), собственные значения —3 и +1, а оператор Р=1/2[1+()]— значения –1 и +1, причем он должен действовать на зарядовые координаты t и t2 двух нуклонов точно так же, как оператор (4.18) на спиновые переменные s1 и s2.
Введение зарядовой координаты t эквивалентно признанию существования у нуклона пяти степеней свободы (три пространственных, спиновая и зарядовая координаты). Поскольку система нуклонов, подчиняющихся статистике Ферми — Дирака, должна описываться волновой функцией, антисимметричной относительно перестановки всех координат любой пары нуклонов, волновая функция системы из двух нуклонов
Последнее соотношение может быть заменено таким:
Это позволяет выразить оператор Майорана Рм через операторы P и Рб*):
Если же принять во внимание, что оператор рг связан с опеаторами Рм и Рб соотношением
PГ = PМPB, (4.21) , тo для оператора Гейзенберга получаем:
.
Перестановка зарядовых координат, как и следовало ожидать, эквивалентна перестановке пространственных координат и спиновых переменных нуклонов.
Система из двух одинаковых частиц — нейтронов или протонов — должна характеризоваться волновой функцией, симметричной относительно зарядовых координат; поэтому синглетным состояниям такой системы (антисимметричным относительно спиновых переменных) соответствует четная относительно перестановки пространственных координат функция, а триплет-ным состояниям — нечетная.
Выше было указано, что включение в гамильтониан слагаемых, содержащих операторы Рм, РБ и Рг, не может привести к возникновению состояния, являющегося суперпозицией состояний с различными . Поэтому для объяснения возникновения у дейтрона электрического квадрупольного момента в гамильтониан должны войти члены, соответствующие тензорному взаимо действию.
Тензорные силы также могут быть обычными и обменными. При обычных тензорных силах в гамильтониан входит S12 (см (4.3) ) , а в случае обменных сил берется комбинация PГSl2. Произведения же PБSl2 и PМSl2 включать в гамильтониан не имеет смысла в связи с тем, что по (4.6)
Таким образом, оператор потенциальной энергии, учитывающий зависимость от пространственных, спиновых и зарядовых координат, может быть представлен в виде
Входящие в это выражение операторы соответствуют различным типам взаимодействия. Оператор () соответствует обмену спиновыми переменными, () — обмену пространственными и спиновыми переменными, ()() — обмену пространственными переменными. Оператор S учитывает тензорное взаимодействие, a ()S — тензорное обменное взаимодействие.
Следует, наконец, указать, что оператор (4.24) представляет наиболее общий тип оператора потенциальной энергии, удовлетворяющий требованию, инвариантности относительно смещений, вращений и инверсии системы координат, при условии, что взаимодействие не зависит от суммарного спина, скоростей и заряда ядра .
Явление насыщения ядерных сил свидетельствует о том, что каждый нуклон, входящий в состав сложного ядра, взаимодейетвует с ограниченным числом частиц. В противном случае, т. е., если бы каждый нуклон взаимодействовал со всеми нуклонами в ядре, энергия связи, как уже отмечалось, была бы пропорциональной числу взаимодействующих пар нуклонов А (А — 1)/2. Используя вариационный принцип, можно показать, что, независимо от формы потенциальной функции, обычные короткодействующие силы притяжения не могут привести к насыщению .
По-видимому, насыщение может возникнуть в том случае, когда ядерные силы, являющиеся силами притяжения, на малых расстояниях переходят в силы отталкивания, что соответствует конечным размерам нуклонов.
Иная возможность объяснения насыщения заключается в предположении, что между нуклонами действуют обменные силы. Однако, как мы увидим ниже, приводят к насыщению не j любые силы этого типа.
Выясним сначала, могут ли обусловить насыщение силы Майорана, для чего предположим, что состояние каждого нуклона можно описать с помощью функции, зависящей только от его координат. Это допущение не находится в противоречии с опытными фактами.
Потенциальная энергия W взаимодействия любого протона, находящегося в состоянии u(r, s), с нейтроном в состоянии | u(r, s) при наличии сил Майорана имеет вид
Если протон и нейтрон находятся в различных состояниях, функции и(r) и v (r) будут ортогональны друг другу, а интеграл W (это очевидно, если предположить, что V(r) можно аппроксимировать с помощью прямоугольной потенциальной ямы; тогда W=0). Энергия взаимодействия двух частиц будет отлична от нуля в том случае, если протон и нейтрон находятся в одном же состоянии. При взаимодействии Майорана нейтрон взаимодействовать с теми протонами, у которых координатная часть волновой функции совпадает с соответствующей волновой функции нейтрона. Согласно принципу Паули в ядре могут находиться два таких протона (с противоположно Ориентированными спинами); поэтому при силах Майорана каждый нейтрон может взаимодействовать с двумя протонами и, наоборот, каждый протон — с двумя нейтронами.
Отсюда можно сделать вывод, что в таких ядрах, как 2Не3, H2 и H3, насыщение наблюдаться не должно, но ядро 2Не4 должно представлять замкнутую систему. Энергия связи, нриходящаяся на частицу, подтверждает сделанный вывод. Если воспользоваться химической терминологией, можно было бы сказать, что каждый нуклон имеет по две «валентные» связи).
Иначе обстоит дело, когда между нуклонами действуют силы Гейзенберга. В этом случае в оператор потенциальной энергии входят операторы Паули, действующие на спиновую переменную, в результате чего знак потенциала различен при параллельных и антипараллельных направлениях спинов взаимодействующих частиц. Поэтому нейтрон может притягивать к себе только один протон, а протон — только один нейтрон. При силах Гейзенберга систему с насыщенными ядерными связями должен был бы представлять дейтрон. Большая энергия связи, приходящаяся на каждую частицу в ядре Не4, с этой точки зрения объяснена быть не может. Следовательно, приняв, что ядерные силы являются обменными, мы должны либо отдать предпочтение силам Майорана, либо считать, что они представляют собой «смесь» сил Майорана и Гейзенберга, причем большую часть этой «смеси» составляют силы Майорана. (Силы же Бартлетта, при которых отсутствует замена пространственных координат, к насыщению не приводят.)
Однако рассеяние нейтронов и протонов, обладающих большими энергиями, говорит о том, что ядерные силы не могут быть чисто обменными силами, а являются, по-видимому, комбинацией обычных и обменных сил. Присутствие же в гамильтониане членов, соответствующих обычным силам, вновь поднимает вопрос объяснения насыщения ядерных сил ).
Для объяснения насыщения в этом случае принимают, что между нуклонами, помимо рассмотренных выше сил, действуют так называемые «множественные» силы, сущность которых заключается в их отсутствии при взаимодействии двух частиц и отталкивании между тремя или большим числом частиц.
Мезоны и ядерные силы
В предыдущем разделе было дано формальное определение обменных сил, причем не затрагивались вопросы, связанные с осуществлением обмена зарядами, спинами или координатами. Представление о механизме обмена базируется на соображениях, аналогичных использованным Дираком при построении теории электромагнитного взаимодействия.
В этой теории двойственная, корпускулярно-волновая природа электромагнитных явлений интерпретируется с помощью волновой аналогии, согласно которой в пространстве, окружающем взаимодействующие заряды или токи, существует поле, характеризуемое в каждой точке потенциалами или векторами на пряженности. С другой стороны, те же явления могут быть истолкованы с помощью понятия квантов. Иначе говоря, с электромагнитным полем связывается представление о фотонах — «квантах этого поля, являющихся «частицами» с равными нулю зарядом и массой покоя и подчиняющихся статистике Бозе — Эйнштейна. Фотоны могут испускаться и поглощаться, т. е. возникать и исчезать; взаимодействие же между зарядами может быть объяснено обменом квантами электромагнитного поля.
Аналогичные представления были использованы и при построении теории взаимодействия нуклонов. Предполагалось, что каждый нуклон характеризуется специфическим «нуклонным зарядом», создающим поле ядерных сил. Этому полю соответствуют кванты, которые, в отличие от квантов электромагнитного поля, могут иметь не равную нулю массу покоя. Впервые эта идея была высказана в 1934 г. Д. Д. Иваненко и И. Е. Таммом, допускавшими, что квантами ядерного поля являются электроны и нейтрино. Предположение, что ядерное взаимодействие осуществляется через электронно-нейтринное поле, позволило объяснить короткодействующий характер ядерных сил, но привело бы к слишком малым значениям энергии связи нуклонов.
Эта идея нашла дальнейшее развитие в работе Юкавы, который предположил, что «тяжелым» квантом поля ядерных сил является (в то время еще гипотетическая) частица с массой покоя, равной примерно 200 электронным массам. В 1937 г. в составе космического излучения была обнаружена частица с массой, близкой к 200 те, получившая название мезона. Первоначально считалось, что квантом ядерного поля является именно такой мезон; однако дальнейшие исследования показали ошибочность этого. Частица с mmе в настоящее время известна под названием мюзона. Он весьма незначительно взаимодействует с нуклоном — примерно в 1012 раз слабее, чем если ,бы он действительно, был тяжелым квантом ядерного поля.
Определенная к настоящему времени масса мюона m = 105,659 Мэв ) . Обнаружены положительные и отельные мюоны, причем по абсолютной величине их заряд, по-видимому, не отличается от заряда электрона. Спин мюона равен ½. Как положительные, так и отрицательные мюоны неустойчивы; их средняя продолжительность жизни в вакууме в системе координат, связанной с мюоном, равна =2,2 • 106 сек ). ; Распад мюона происходит по схеме
Страницы: 1, 2, 3, 4