Основные дели исследования скважины в необсаженном стволе — определение пористости, водонасыщенности и границ продуктивной зоны или зон. Эти параметры необходимы для установления количества извлекаемой нефти и времени эксплуатации пласта. Скважинные исследования подробно изложены в работе. В большинстве разведочных и эксплуатационных скважин проводят текущие исследования и определяют пластовое давление, тип и качество углеводородов. Эксплуатационные исследования проводят для определения показателя продуктивности нефтяной или газовой скважины. Опробование испытателем пласта, спущенным на колонне бурильных труб, проводят с целью контроля скважинных эксплуатационных характеристик, для определения видов флюида и некоторых пластовых параметров.
Заканчивание нефтяной скважины включает установку эксплуатационного пакера, спуск колонны НКТ и перфорацию продуктивной зоны (зон). Эксплуатационный пакер устанавливают непосредственно над продуктивной зоной, в результате чего з-атрубное пространство изолируется от пластового давления, а также ограничивается поступление жидкости в НКТ. НКТ навинчивают на подвесное устройство в колонной головке (рис. 1.15) и устанавливают в катушку колонной головки.
В районах с несколькими нефтяными пластами в одной и той же скважине нельзя допускать двойную эксплуатацию, когда две колонны НКТ спускают в разные продуктивные зоны. Таким образом, необходимо два пакера для изоляции продуктивных зон от затрубного пространства.
К верхнему фланцу катушки головки НКТ присоединяют фонтанную арматуру (елку).
Фонтанная арматура — это стальное устройство с полым каналом внутри, соединенное с верхней частью НКТ. Она имеет ряд клапанов для управления потоком углеводородов, поступающих из
скважины.
П
Рис. 1.15. Схема оборудования для эксплуатации скважины двумя колоннами НКТ:
/ — башмак обсадной колонны диаметром 177,8 мм; 2,3 — интервалы перфорации для длинной и короткой колонн НКТ; 4, 28 — направляющий безмуфтовый башмак диаметром 60,3 мм с резьбой типа CS для спуска приборов на кабеле; 5 — короткий безмуфтовый переводник с резьбой типа CS; 6 — ниппельный переводник диаметром 60,3 мм типа XN фирмы «Отис» (имеет суженное проходное отверстие); 7 — перфорированная труба-фильтр диаметром 60,3 мм; « — труба НКТ диаметром 50,8 мм; 9, 21 — ниппельный переводник диаметром 60,3 мм типа X фирмы «Отис»; 10, П— НКТ диаметром 60,3 мм; // — переводник НКТ 60,3X73 мм; 12 — НКТ диаметром 73 мм; 13 — короткая колонна НКТ 60.3Х Х73 мм; 14 — длинная колонна НКТ диаметром 73 мм; 15 — обсадная колонна диаметром 219 мм; 16 — подвеска потайной обсадной колонны диаметром 177,8 мм; 18 — устройство типа SSD фирмы «Отис» со скользящей боковой дверцей; 19 — секция защитных труб диаметром 60,3 мм; 20 — башмак обсадной колонны диаметром 219 мм; 22 — локатор (посадочный переводник) типа G-22 фирмы «Бэй-кер»; 23 — пакер типа F-1 фирмы «Бэйкер»; 24 — уплотнительное устройство; 25 — безмуфтовые перфорированные трубы диаметром 60,3 мм с резьбой; 26 — ниппельный переводник диаметром 60,3 мм типа XN; 27 — короткий переводник диаметром 60,3 мм; 29 — потайная колонна диаметром 177,8 мм
Буровое долото—неотъемлемая часть бурильной колонны, и его правильный выбор невозможно переоценить. Буровое долото разрушает породу в результате совместного действия осевой нагрузки и крутящего момента. Разрушенная порода вымывается с забоя буровым раствором, позволяя долоту разрушать вновь образованную поверхность. В результате этого процесса— разрушения породы и очистки забоя — образуется ствол скважины.
В данной главе изложены результаты работы шарошечных долот для роторного бурения и'приведен краткий обзор типов долот с алмазными поликристаллическими вставками.
Шарошечное долото состоит из шарошек конической формы, которые вращаются вокруг собственной оси и оси долота.
Эти долота наиболее широко используют при бурении нефтяных скважин, а также месторождений твердых полезных ископаемых и для целей гражданского строительства. Впервые эти долота были применены в 1920 г. В настоящее время бурение 95 % объема проходки нефтяных скважин осуществляется шарошечными долотами.
Шарошки долота снабжены фрезерованными зубцами, выполненными из тела шарошки, или вставками карбида вольфрама. Долота с фрезерованными зубцами используют при бурении мягких пород, а штыревые долота—средних и твердых горных пород..
Существуют три типа шарошечных долот:
1) двухшарошечные долота, изготовляемые в настоящее время только с фрезерованными зубцами, что ограничивает их применение для мягких пород;
2) трехшарошечные долота, которые изготовляют как с фрезерованными зубцами, так и с вставками из карбида вольфрама (рис. 4.1); изложенное ниже, в основном, относится к трехша-рошечным долотам;
3) четырехшарошечное долото, которое изготовляют только с фрезерованными зубцами и используют в настоящее время для скважин большого диаметра, т. е. 660,4 мм и более.
Рис 4 1 Штыревое долото со вставками из карбида вольфрам
В трехшарошечном долоте применяют три режущих шарошки, каждая из которых укреплена на лапе на соответствующем подшипниковом узле. На рис. 4.2 и 4.3 приведены элементы долот с фрезерованными зубьями и со вставками из карбида соответственно.
Трехшарошечное долото состоит из трех одинаковых по размеру шарошек и трех идентичных лап (рис. 4.4). Три лапы сварены вместе и образуют цилиндрическую секцию, которая имеет резьбу для присоединения к бурильной колонне. В каждой лапе выполнено отверстие (для циркуляции раствора), диаметр которого может изменяться путем установки насадок различных диаметров (см. рис. 4.3). Насадки используют, чтобы создать сужение для получения высокой скорости истечения жидкости и эффективной очистки ствола скважины. Раствор, прокачиваемый через бурильную колонну, проходит через три насадки и в каждую насадку поступает треть потока (если все насадки одинакового диаметра).
Конструкция шарошечного долота зависит от типа и твердости породы, а также от диаметра скважины, которую следует пробурить. Твердость породы определяет тип и состав материала, используемого для изготовления режущих элементов. Применяемая сталь имеет высокое содержание никеля и, кроме того, упрочняется добавлением молибдена.
Рис. 4 2. Элементы долота с фрезерованными зубцами
/, 7 — вершина и ocнование зубца 2 — зубец; 3, 6, 8 — шарошки Л' 2, 1 и 3 соответственно, 4—межвенцовая расточка, 5 — выемка между зубцами 9 — промывочная канавка 10 —копьевидная вершина; //, 14— калибрующие поверхности периферийных зубцов с режущими кромками соответственно L и T- образной формы, 12— тыльная сторона шарошки с твердым покрытом 13-направляющая поверхность шарошки.
Рис. 4.3 Элементы долота со вставками из карбида вольфрама:
/, 3, 9 — шарошки № 2, 1 и 3 соответственно, 2 — штыри с пикообразной рабочей головкой, 4 — удлиненные штыри с пикообразной рабочей головкой; 5 — плоские твердосплавные вставки; 6 — шаг (переменный) между твердосплавными вставками; 7 — отверстие насадки; 8 — межвенцовая расточка (канавка); 10 — штыри с пикообразной рабочей головкой калибрующего венца шарошки, // — штыри внутреннего венца шарошки.
Рнс 4. 4 Долото с герметизированной опорой:
а — общий вид, б — лапа, / — ниппель, 2 — приварная крышка (пробка); 3 — смазка, 4 — канал для смазки, 5 — приварной замковый палец; 6 — козырек лапы, 7 — сальниковое уплотнение подшипников, 8 — наружный роликовый подшипник; 9 — шариковый подшипник, 10— концевой опорный подшипник, 11— цапфа; 12 — втулка цапфы, 13 — шарошка, 14 — уравнительное отверстие, 15 — диафрагменный компенсатор (сильфон)
Конструкция долота определяется свойствами породы и диаметром скважины. Лапы и цапфы идентичны, но форма и распределение резцов на шарошках различны [2]. Конструкция долота обеспечивает равномерную нагруженность трех лап.
При проектировании и изготовлении трехшарошечных долот Для мягких и твердых пород обычно учитывают следующие факторы: угол наклона цапфы; величину смещения, форму зубцов; тип подшипников и взаимосвязь между зубцами и подшипниками.
Угол наклона цапфы. Цапфа долота представляет собой опорную поверхность, несущую нагрузку, и состоит из подшипников (см. рис. 4.4). Угол наклона цапфы определяется как угол, образованный линией, перпендикулярной к оси цапфы, и осью долота. На рис. 4.5 показан разрез лапы трехшарошеч-ного долота. Угол 6 определяет угол наклона цапфы.
Угол наклона цапфы непосредственно влияет на размеры шарошки. Увеличение угла наклона цапфы ведет к уменьшению угла основного конуса шарошки, что, в свою очередь, отражается на размерах долота. На рис. 4.6 показано, как уменьшаются размеры шарошки, если угол наклона цапфы увеличивается от 0 до 45°. Чем меньше угол наклона цапфы, тем больше калибрующе-фрезерующее действие трех конических шарошек [1]. По мере возрастания угла цапфы (начиная с нуля) форма шарошек должна быть такой (см. рис. 4.6), чтобы исключить их зацепление друг с другом. Следовательно, угол наклона цапфы влияет на размеры и форму шарошки.
Оптимальные углы наклона цапфы шарошечных долот для мягких и твердых пород составляют 33 и 36° соответственно.
Рис. 4.5. Схема определения угла наклона цапфы:
/ — ось долота; 2 — ось цапфы; 3 — цапфа
Рис. 4.6. Влияние угла наклона цапфы на размеры шарошки:
а б, в, г, д — угол наклона цапфы 0, 15, 30, 36 и 45° соответственно Темным показаны части, которые удаляются
Рис. 4.7. Конструкции шарошек: а — перекатывающейся шарошки; 6 — для чягмэй породы; в — со смещением осей шарошки относительно оси долота, I — ось шарошки и опоры подшипников; 2 — ось долота* 3 — вершина; 4 — угол конуса шарошки; 5 -т вершина внутреннего угла; 6 — вершина угла периферийного конуса шарошки; 7,8 — угол соответственно периферийного и внутреннего конусов шарошки; 9 — смещение; 10 — ось цапфы; //—вершина угла смещения; 12 — угол смещения.
Страницы: 1, 2, 3, 4, 5