Рефераты. Разработка конструкции и технологии изготовления частотного преобразователя

Для изготовления радиаторов используют в основном медь, дюралумины и алюминий. В нашем случае используется алюминий, т. к. этот материал дешевле меди и обладает более высокими прочностными характеристиками по отношению к дуралюминам. Основные характеристики алюминия: температура плавления 600 ºС; плотность 2,7 г/см2; алюминий обладает высокой теплопроводностью.

В качестве материала кнопок и опор используется резина общего назначения типа СКС-10. Это наиболее распространенная резина с высокой морозостойкостью, хорошим сопротивлением к старению и хорошо работающая при многократных деформациях [10].

2.2 Обоснование конструкции изделия

К корпусу преобразователя предъявляются высокие требования. Он должен обеспечивать: жесткое закрепление плат; защиту плат и ЭРЭ от внешних климатических, механических и других воздействий; экранирование схемы от внешних электромагнитных излучений и наводок; теплоотвод. Кроме того, корпус должен быть технологичным, экономически выгодным, обеспечивать возможность сборки схемы, контроль, надстройку, ремонт. При выборе материала корпуса необходимо учитывать требования уменьшения массы, снижения стоимости изготовления, соответствия температурных коэффициентов линейного расширения материалов корпуса и плат, возможность пайки и хорошую теплопроводность.

Корпус выполнен из стального листа марки Ст10 ГОСТ 1577-74 толщиной 1мм. Все детали корпуса изготавливаются методом штамповки и в дальнейшем соединяются сваркой, т. к. эти технологические процессы широко распространены и не требуют значительных капиталовложений. В нем имеются перфорационные отверстия. После проведения всех сварочных работ необходимо наплывы и неровности  сварных швов обработать с плавным переходом к основному материалу. Затем следует покрыть корпус грунтовкой ВЛ-023 ГОСТ 12707-77 и эмалью ПФ-115 белой ГОСТ 6465-76. Корпус белого цвета будет меньше поглощать инфракрасное солнечное излучение в условиях работы под воздействием солнечных лучей. Крышка крепиться к корпусу винтами М3×6 ГОСТ 17475-80. На крышке имеются отверстия для светодиода, сегментных индикаторов и крепления резиновой прокладки, которая имеет функцию клавиатуры. Надписи на крышке «ПУСК», «СТОП» «+», «-», «Частота» выполняются эмалью ПФ115 черной ГОСТ 6465-76 шрифтом 10-Пр3 СТБ 992-95. Это поспособствует лучшей читаемости символов. Для коммутации прибора с сетью питания и двигателем используется клемная колодка, поэтому в нижней части корпуса предусмотрен вырез для ввода кабелей.

К основанию корпуса винтами М3×35 ГОСТ 17475-80 прикручиваются резиновые опоры. Их использование увеличивает устойчивость корпуса и благоприятствует вентиляции. Для крепления плат используются стойки высотой 25 мм и 110,5 мм диаметром 8 мм, они изготавливаются из стальных прутков. Узел А2 крепится тремя винтами, причем 2 винта М3×16  ГОСТ 17475-80 вкручиваются в стойки и фиксируют клемник.

Расположение корпуса – горизонтальное.

Т. к. в устройстве используется 6 мощных IGBT транзисторов, для их охлаждения необходим радиатор. Он монтируется внутри корпуса и имеет в своей конструкции паз по всей длине для крепления печатной платы. Транзисторы с нанесенной теплопроводной пастой КТП8 прикручиваются к радиатору и прижимаются скобами для улучшения теплоотдачи. Способ охлаждения в корпусе — естественный воздушный.

Размеры корпуса – 250х160х120 мм. Такие габариты обусловлены большим выделением тепла в корпусе и непосредственно размерами радиатора.

В применении устройств амортизации нет необходимости, так как не предполагается, что разрабатываемое устройство будет подвергаться значительным механическим нагрузкам во время эксплуатации.

Для коммутации узла А1 с узлом А2 используется шлейф 888-03-0014 фирмы «Molex», количество жил в шлейфе – 14. Он подключается в разъемы на платах перед сборкой корпуса и крышки.

Расположение плат – горизонтальное.

Материл, из которого изготавливается печатная плата узла А1– стеклотекстолит, марка СФ-2-35-1,5 ГОСТ 10316 – 78, узла А2 - стеклотекстолит, марка СФ-2-50-1,5 ГОСТ 10316 – 78. Для узла А2 выбран стеклотекстолит с толщиной металлического покрытия 50 мкм, т. к. в этом узле будут протекать большие токи, а следовательно при более тонком слое меди расчетная ширина дорожек будет большей. Метод изготовления печатных плат - комбинированный позитивный, так как необходимы металлизированные отверстия. Использование этого метода дает возможность выполнить печатный монтаж с высокой разрешающей способностью. Рисунок формируется путем фотолитографии.

Использование SMD элементов для поверхностного монтажа снижает площадь печатных плат. Пайка установленных на плате SMD элементов ведется методом оплавления в печи, остальных (компоненты, монтируемые в отверстия) – волной припоя и индивидуальной пайкой паяльником. Все элементы узла А2 устанавливаются с одной стороны, а у узла А1 разъем смонтирован с противоположной стороны от остальных элементов. Это способствует беспрепятственному доступу к разъемам при подключении шлейфа. Травление плат осуществляется согласно чертежам ПП. После травления плат необходимо провести их лужение припоем ПОС - 61      ГОСТ 21931 – 76. Затем производится покрытие плат маскирующей краской зеленого цвета ФСК3-5 ТУ107-91 БИТС.066629.003ТУ  для улучшения коррозионной стойкости элементов монтажа.


3 КОНСТРУКТОРСКИЕ РАСЧЕТЫ


3.1 Расчет объемно-компоновочных характеристик устройства


Исходные данные для расчета:

К - коэффициент заполнения, К = 2…3, принимаем К = 2;

Суммарная площадь занимаемая радиоэлементами на узле А1    (таблица 1.4), SΣ = 990 мм2;

Суммарная площадь занимаемая радиоэлементами на узле А2   (таблица 1.4), SΣ = 6095 мм2;

 - суммарный объем всех ЭРИ (таблица 1.4), ∑VЭРИ = 98332 мм3;

 - суммарная масса всех ЭРИ (таблица 1.4), ∑МЭРИ = 335 г;

Находим общую площадь узла А1:

   мм2,                                                             (3.1)

 мм2.

Согласно ГОСТ 10317-79 принимаем размеры платы 50×40 мм.

Находим общую площадь узла А2 по формуле (3.1):

 мм2.

Согласно ГОСТ 10317-79 принимаем размеры платы 160×80 мм.

Коэффициент заполнения устройства по объему:

 ,                                                                      (3.2)

где  - объем проектируемого устройства, мм3 (габаритные размеры корпуса 250´160´120 мм3 определены в п. 2 Разработка конструкции изделия);

.

Объемная плотность устройства:

,                                                                 (3.3)

   (г/мм3).


3.2 Расчет параметров электрических соединений


Узел управления прибором (А1) выполнен на двусторонней печатной плате с металлизацией сквозных отверстий из СФ-2-35-1,5 ГОСТ 10316-78 толщиной 1,5 мм (толщина фольги – 0,035 мм). ДПП с металлизацией переходных отверстий отличается высокой трассировочной способностью, обеспечивает высокую плотность монтажа элементов и хорошую механическую прочность их крепления, она допускает монтаж элементов на поверхности и является наиболее распространенной в производстве радиоэлектронных устройств.

Точность изготовления печатных плат зависит от комплекса технологических характеристик и с практической точки зрения определяет основные параметры элементов печатной платы. В первую очередь это относится к минимальной ширине проводников, минимальному зазору между элементами проводящего рисунка  и к ряду других параметров.

По ГОСТ 23.751-86 предусматривается пять классов точности печатных плат, которые обусловлены уровнем технологического оснащения производства. Выбран 4-ий класс точности ОСТ 4.010.022— 85. Метод изготовления печатной платы – комбинированный [3].

Расчет печатного монтажа состоит из трех этапов: расчет по постоянному и переменному току и кон­структивно-технологический.

Исходные данные для расчета печатного монтажа узла А1:

Диаметры выводов для элементов HG1, HG2, DD1, HL1 и XP1 равны 0,7 мм – 1-я группа; для элементов SA1-SA4 равны 0,8 мм – 2-я группа; для переходных отверстий равны 0,2 – 3-я группа;

1.                 Imax — максимальный постоянный ток, протекающий в провод­никах (определяется из анализа электрической схемы),  Imax = 0,1  A;

2.                 Толщина фольги, t = 35  мкм;

3.                 Напряжение источника питания, Uип = 5  В;

4.                 Длина проводника, l = 0,02  м;

5.                 Допустимая плотность тока, jдоп = 48 А/мм2;

6.                 Удельное объемное сопротивление ρ = 0,0175 Ом·мм2/м;

7.                 Способ изготовления печатного рисунка: комбинированный позитивный.

Определяем минимальную ширину, мм, печатного проводни­ка по постоянному току для цепей питания и заземления:

,                                                                              (3.4)

где  bmin1 - минимальная ширина печатного проводника, мм;

jдоп - допустимая плотность тока, А/мм2;

  t – толщина проводника, мм;

  мм.

Определяем  минимальную ширину проводника, мм, исходя из допустимого падения напряжения на нем:

 ,                                                                          (3.5)

где ρ — удельное объемное сопротивление [3], Ом·мм2/м;

l — длина проводника, м;

Uдоп— допустимое падение напряжения, определя­ется из анализа электрической схемы. Допустимое падение напря­жения на проводниках не должно превышать 5% от питающего напряжения для микросхем и не более запаса помехоустойчивости микросхем.

  мм.

Определяем ширину bmin3, проводников при изготовлении комбинированным позитивным методом, мм:

,                                   (3.6)


где b1min — минимальная эффективная ширина проводника      b1min=0,15 мм для плат 4-го класса точности.

   мм.

Принимаем bmin = max{bmin1, bmin2, bmin3} = 0,23  мм

Максимальная ширина проводников, мм:

                                   (3.7)

                                      мм.

Определяем  номинальное значение диаметров монтажных отверстий d:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.