Рефераты. Расчёт и конструирование сборных и монолитных железобетонных конструкций каркаса одноэтажного произв...

.

При шаге стержней 200 мм принимают 23 Æ16 A-II c AS=46,3см2. процент армирования


5.4. Расчет подколонника.


Продольное армирование подколонника и его стаканной части определяем из расчета на внецентренное сжатие коробчатого сечения стаканной части в плоскости заделанного торца колонны (IV-IV) и расчета на внецентренное сжатие прямоугольного сечения подколонника в месте примыкания его к плитной части фундамента Размеры коробчатого сечения стаканной части, преобразованное в эквивалентное двутавровое:

b=1,4 м;  h=2, 4 м;  =1,5 м;  =0,425 м;  =0,04 м;  =2,36 м; =0,04/2,36=0,017.

Расчетное усилие в сечении IV-IV при gf>1:

 

Эксцентриситет продольной силы:

.

Расстояние от центра тяжести сечения растянутой арматуры до силы N:

Проверяем положение нулевой линии. Так как

 > N=2292.9 кН, нулевая линия проходит в полке, и сечение рассчитываем как прямоугольное шириной  bf’=150 см.

Принимаем симметричное армирование, тогда высота сжатой зоны:

.

Сечение симметричной арматуры:

, т.е. продольная арматура по расчету не нужна. Назначаем в соответствии с конструктивными требованиями не менее 0,04 % площади поперечного сечения подколонника: AS=AS’=0,0005×150×240=18 см2. Принимаем с каждой стороны подколонника  6Æ18 A-II c AS=AS’=18,85 см2. У длинных сторон подколонника принимаем продольное армирование  8 Æ18 A-II.

Прочность сечения V-V не проверяем, так как усилия от полученных ранее отличаются незначительно.

Поперечное армирование подколонника определяем по расчету на момент от действующих усилий относительно оси, проходящей через точку поворота колонны.

Так как  0,5×hc=0,5×1,4=0,67 > e0=0,61 м > hc/6=1,4/6=0,23 м, поперечное армирование определяют по формуле:

,

  Szi=7.5+22.5+37.5+52.5+67.5+82.5+97.5+112.5=480 cм – сумма расстояний от точки поворота колонны до сеток поперечного армирования подколонника при шаге сеток 150 мм и расстоянии от верха стакана до верхней сетки 75 мм.

Необходимая площадь сечения одного рабочего стержня (при четырех стержнях в каждой сетке):  ASW=4.5/8=0,5625 см2. Принимаем  Æ9 A-I c ASW=0,636см2.



5.5 Конструирование.



Рис. 5.5.1. Схема армирования фундамента.


6.Расчет сборной предварительно напряженной арки пролетом 36м.


6.1. Данные для проектирования.

Бетон тяжелый класса В30 ( при  ;; при  ;; для бетона естественного твердения ;

; ).

Предварительно напрягаемая арматура затяжки – высокопрочная проволока периодического профиля класса Вр-II (;;); натяжение арматуры производится механическим способом на упоры с применением инвентарных зажимов.

Ненапрягаемая арматура класса А-III Ø 10-40 мм (;;).

Затяжка относится к конструкциям  3-й категории трещиностойкости.  Прочность бетона к моменту отпуска натяжных устройств (передаточная прочность) принимается .


6.2. Расчетный пролет и нагрузки.


Расчетный пролет арки  ,

где а – расстояние от торца арки до точки опирания на колонну.

Расчетная постоянная нагрузка на 1 м  с учетом веса арки

 Расчетная временная нагрузка при , для г.Севастополя


6.3. Геометрические характеристики и усилия в сечениях арки.


Арку рассчитываем как двухшарнирную с затяжкой. Из соображений унификации блоков ось арки выполняем по круговому очертанию.

Варианты загружения и статическая схема арки приведены на рис. 6.1.



а)

б)

Рис. 6.3.1 Варианты нагружения арки:

а – сплошная нагрузка; б – односторонняя снеговая нагрузка.


Находим геометрические характеристики арки согласно рис. 3.3.2

Радиус круговой оси: м,

где - стрела подъема, принятая равной примерно 1/9 пролета, то есть 3,97 м;

Центральный угол  25°8´≈25°

Длина арки м,

Арку разбиваем на 10 равных частей (дуге 0,1части соответствует угол =5°)

и определяем горизонтальные ординаты сечений по формулам :

; ,где

Величина у6 соответствует длине стрелы подъёма f. Результаты вычислений  приведены в таблице 6.3.



Рис. 6.3.2. Схема геометрических характеристик арки.

 


 Таблица 6.3.

К определению значений х  и у.

Номер сечения

 град

х, м

у, м

1

25

0.4226

0.9063

0.00

0.00

2

20

0.3420

0.9397

3.47

1.44

3

15

0.2588

0.9659

6.96

2.54

4

10

0.1736

0.9848

10.53

3.33

5

5

0.0872

0.9962

14.15

3.81

6

0

0.0000

1.0000

17.8

3.97

7

5

0.0872

0.9962

14.15

3.81

8

10

0.1736

0.9848

10.53

3.33

9

15

0.2588

0.9659

6.96

2.54

10

20

0.3420

0.9397

3.47

1.44

11

25

0.4226

0.9063

0.00

0.00


Предварительно задаемся площадями сечений арматуры в арке и в затяжке, а так же вычисляем геометрические характеристики их сечений.


Рис.6.3.1. Сечение блока арки.

Принимаем с округлением .

Отношение модулей упругости для арки .

Тогда площадь приведенного симметричного армированного сечения арки

Момент инерции приведенного сечения при расстоянии до центра тяжести

Радиус инерции приведенного сечения

Так как площадь сечения затяжки , то сечение арматуры принимаем приближенно   

Учитывая, что для затяжки отношение модулей упругости . Определяем площадь приведенного сечения затяжки:

Коэффициент податливости затяжки:

Для каждого случая загружения (см. рис. 3.1.) находим распор от нагрузки , принятой за единичную :

для равномерно распределённой нагрузки

для односторонней равномерно распределённой нагрузки на половине пролёта арки:

По вычисленному распору для каждого вида загружения определяем расчётные усилия в сечении арки. Для этого сначала определяем балочные моменты  и поперечные силы .

При равномерно распределённой нагрузке балочные момента и поперечные силы находим по формулам:

где - опорная реакция в балке.

При загружении половины пролёта арки балочный момент и поперечную силу в незагруженной части определяем по формуле:

где  - реакция в балке со стороны незагруженной части.

После вычисления балочных моментов и поперечных сил определяем расчётные усилия для всех сечений арки:

где  - угол между касательной к оси арки в ассматриваемом сечении и горизонталью (см. таб. 3.3 и рис. 3.1); - изгибающий момент и поперечная сила в балке на двух опорах пролётам равным пролёту рассчитываемой арки.

Определим  в середине пролёта арки при действии равномерно распределённой нагрузке  при ;

Далее расчёт производим аналогично.

В таблице 3.4 приведены усилия от единичной нагрузки , распределённой по всему пролёту; а в таблице 3.5.– усилия в арке от единичной нагрузки  на левой половине.







Таблица 6.4.

Усилия от распределённой нагрузки

 распределённой по всему пролёту

Номер сечения

Н, кН

, кНм

, кН

, кНм

, кН

, кН

1

38,6

0,00

17,8

0,00

42,51

-0,18

2

55,75

14,33

0,17

41,17

0,27

3

99,67

10,84

1,63

40,09

0,48

4

131,99

7,27

3,45

39,27

0,46

5

151,76

3,65

4,69

38,77

0,27

6

158,42

0,00

5,18

38,6

0,00

7

151,76

-3,65

4,69

38,77

-0,27

8

131,99

-7,27

3,45

39,27

-0,46

9

99,67

-10,84

1,63

40,09

-0,48

10

55,75

-14,33

0,17

41,17

-0,27

11

0,00

-17,8

0,00

42,51

0,18

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.