Исходя из производительности котельной по пару с давлением P = 1,4 МПа, необходимо выбрать котельные агрегаты. Для обеспечения потребности по пару выбираю следующий тип котлов средней мощности:
Е-50-14
Краткая характеристика [3]:
1. Изготовитель з-д «Энергомаш» г. Белгород;
2. Паропроизводительность 50 т/ч;
3. Давление насыщенного пара 1,4 МПа;
4. Температура уходящих газов 1400С (для работы на газе).
Необходимое количество котельных агрегатов:
6.2 Расчет тепловой схемы водогрейной части котельной
Задача водогрейной части котельной – подготовить сетевую воду для покрытия нагрузок отопления и вентиляции. Нагрузку ГВС, восполнение потерь из тепловой сети, а также химическую обработку и нагрев подпиточной воды до необходимой температуры обеспечивает паровая часть котельной.
Подпиточная сетевая вода забирается из баков-аккумуляторов и вводится за водогрейными котлами. После котлов сетевая вода отпускается потребителю.
В летнем режиме водогрейные котлы остановлены.
Для расчета тепловой схемы данной части котельной необходимо выбрать котельные агрегаты. Максимальное число работающих котлов будет в максимально зимнем режиме
Таблица 7
Расчетная
величина
Расчетная формула или метод определения
Расчетные режимы
+8
>+8
Тепловая нагрузка на ГВС
МВт
Из пункта 1
91,1
58,3
Тепловая нагрузка на отопление
176,175
114,51
77,65
39,15
0
Тепловая нагрузка на вентиляцию
21,141
13,74
9,32
4,7
Производительность котельной
288,416
219,35
178,07
134,95
Расход воды на подпитку и потери в тепловой схеме
кг/с
8,65
6,58
5,34
4,05
1,75
Общая тепловая мощность котельной
297,07
225,93
183,41
139
60,05
Температура прямой сетевой воды на выходе из котельной
0С
Из пункта 2
150
119
80
Температура обратной сетевой воды на входе в котельную
24
29
15
Общий расход сетевой воды
566
214
Расход воды через котлы
886
597
11,3
4,3
Температура воды на выходе из котла (при )
131
107
94
Расход воды на собственные нужды
25,8
Расход воды на линии рециркуляции
323
356
469
530
416
Расход воды по перемычке
68
245
146
20
Расход хво после первой ступени
Расход пара на теплообменник
№ 6
0,804
0,783
0,885
0,669
0,29
Расход выпара из деаэратора
0,024
0,023
0,026
0,02
0,009
Температ. воды после охладителя выпара
оС
64,6
Расход греющей воды на деаэрацию
2,15
2,3
3,54
3,7
4,1
Расход воды через котельный агрегат
875
877
878
880
586
Относительная погрешность
%
1,3
1,02
0,91
0,68
1,8
По тепловой нагрузке производим выбор водогрейных котлов:-ставим 3 котла КВГМ-100-150 (, расчетная температура на выходе из котла 150єС).
7 Выбор теплообменного оборудования
7.1 Выбор деаэраторов
Для дегазации питательной воды в паровой части котельной установлен деаэратор атмосферного типа. Производительность питательного деаэратора равна 14,79 кг/с (61,97 т/ч).
Деаэраторы типа ДА обеспечивают устойчивую деаэрацию воды при работе с нагрузками в пределах от 30 до 120% номинальной производительности. Деаэраторы типа ДА укомплектовываются индивидуальными охладителями выпара и могут быть поставлены без деаэраторного бака [3].
Для деаэрации питательной воды паровых котлов необходим один атмосферный деаэратор типа ДА-75-15
1 Номинальная производительность 75 т/ч;
2 Номинальное рабочее давление 0,12 МПа;
3 Полезная емкость деаэраторного бака 15 м3.
Для деаэрации подпиточной воды (расход 519 кг/с=1868,1 т/ч) тепловых сетей необходимо четыре вакуумных деаэратора типа ДСВ-2000
1 Номинальная производительность 2000 т/ч;
2 Номинальное рабочее давление 0,0075 МПа;
7.2 Выбор подогревателей
Выбор теплообменников следует производить, исходя из их расчетной площади теплообмена. При этом коэффициент теплопередачи ориентировочно можно принимать в пределах от 2500 до 3000 ккал/(м2ч0С) для подогревателей с латунными трубками при достаточной чистоте поверхностей нагрева.
С учетом загрязнения трубок слоем накипи коэффициент теплопередачи равен 1700 - 1800 ккал/(м2ч0С) [3].
Для ориентировочных расчетов поверхности нагрева всех теплообменных аппаратов принимаю коэффициент теплопередачи равным 2500 Вт/(0С м2).
Охладители выпара
Тепловые нагрузки на охладители выпара:
Среднелогарифмический температурный напор:
Поверхность теплообмена:
В качестве охладителей выпара для теплообменников №5 и №7 предлагаю установить следующие теплообменники: ОВА-2/0,22, ОВВ-2/0,22
Краткая характеристика охладителей выпара:
1 ОВА-2/0,22. Рабочее давление в корпусе/трубной системе 0,12/0,5 МПа, пробное давление 0,7 МПа, рабочая температура в корпусе/ в трубной системе 40-104/10-80єС, поверхность охладителя 2 м2, масса 220 г.
2 ОВВ-2/0,22. Рабочее давление в корпусе/трубной системе 0,01-0,12/0,4 МПа, пробное давление 0,7 МПа, рабочая температура в корпусе/ в трубной системе 104/50-80єС, поверхность охладителя 2 м2, масса 220 кг
Подогреватели исходной и химочищенной воды
Необходимо рассчитать площади теплообмена для следующих теплообменных аппаратов:
- охладитель продувочной воды (Т№1);
- подогреватель исходной воды (Т№2);
- подогреватель исходной воды (Т№4);
- подогреватель химочищенной воды после II ступени ХВО (Т№3);
- подогреватель химочищенной воды после I ступени ХВО (Т№6).
Таблица 8
Номер теплообменного аппарата
1
2
3
4
6
Тепловая нагрузка
Q
кВт
764
3083
237,1
Наибольшая разность температур теплоносителей
DtБ
162,7
144
10
Наименьшая разность температур теплоносителей
DtМ
33,7
65
32,9
2,9
30
Среднелогарифмический температурный напор
Dt
63,5
106,6
75,3
5,7
72,8
Коэффициент теплопередачи
k
Рекомендации [3]
2500
Поверхность теплообмена
F
м2
4,9
11,8
16,7
17
17,3
Для теплообменника Т№1 выбираю водяной подогреватель под номером 10 (таблица 2,144.[8]).
Краткая характеристика:
1 Площадь поверхности нагрева секции 6,9 м2.
2 Давление 1,6 МПа.
3 Число латунных трубок 37, Dн = 168 мм.
Для теплообменника Т№2 и Т№3 выбираю пароводяной подогреватель под номером 2 (таблица 2.143.[8]).
1 Площадь поверхности нагрева секции 17,2 м2.
2 Длина корпуса 3,63 мм.
3 Число латунных трубок 124, Dвч = 412 мм.
Для теплообменников Т№4 выбираю водо-водяной подогреватель под номером 14 (таблица 2.144.[8]).
1 Площадь поверхности нагрева секции 20,3 м2.
3 Число латунных трубок 109, Dн = 273 мм.
Для теплообменника Т№6 выбираю пароводяной подогреватель под номером 3 (таблица 2.143.[8]).
1 Площадь поверхности нагрева секции 24,4 м2.
2 Длина корпуса 3,75 мм.
3 Число латунных трубок 176, Dвч = 466 мм.
Используемая литература
1. Соколов Е.А. Теплофикация и тепловые сети. – М.: Энергоиздат, 1982.
2. Есина И.В., Грибанов А.И. Источники и системы теплоснабжения промышленных предприятий. – Челябинск: ЧГТУ, 1990.
3. Бузников Е.Ф., Роддатис К.Ф., Берзиньш Э.Я. Производственные и отопительные котельные. – М.: Энергоатомиздат, 1984.
4. Ривкин С.Л., Александров А.А. Термодинамические свойства воды и водяного пара. Справочник. – М.: Энергоатомиздат, 1984.
5. Кириллов В.В. Лекции по курсу «Источники и системы теплоснабжения».
6. Тепловой расчет котельных агрегатов (нормативный метод). – М.: Энергия, 1973.
7. Григорьев В.А., Зорин В.М. Тепловые и атомные электрические станции. Справочник. – М.: Энергоатомиздат, 1989.
8. Смирнов А.Д., Антипов К.М. Справочная книжка энергетика. – М.: Энергоатомиздат, 1984.
Страницы: 1, 2, 3, 4