Рефераты. Проектирование электропривода тепловизионной системы сопровождения

В целях наиболее полного использования ИД, выбор передаточного числа редуктора осуществляется в точке соответствующего максимума располагаемого ускорения, при этом учитывается взаимное расположение графиков, располагаемых и потребных кинематических параметров.

При расчете располагаемых кинематических характеристик учтем негр создаваемые исполнительным механизмом.

                                                 (14)

                                                                                 (15)

 - номинальный момент двигателя

, - суммарный момент трения и инерции исполнительного механизма

                                                                                  (16)

 - передаточное число редуктора;

 - номинальное значение угловой скорости двигателя

                                             (17)

 - КПД редуктора с прямозубыми цилиндрическими передачами

 

 

 

1 - располагаемое ускорение ()

2 - располагаемая скорость ()

3 - потребное ускорение ()

4 - потребная скорость ()

Рис. 5. - Определение передаточного числа редуктора.

                                                                    (18)

                                                            (19)

Передаточное число редуктора выберем равным 2850. При этом ,


Проверка исполнительного двигателя по скорости, моменту, мощности.

По скорости -    (верно)

По развиваемому моменту - ,  (верно)

По мощности -

90 Вт>19,38 Вт(верно)

1.4 Расчет зон сопровождения цели.

 

Пространственная область применения следящего привода может быть оценена путем построения зон предельных скоростей и ускорений привода. Пространство внутри зоны является запретным.

Наглядное представление о зоне даёт изометрическая проекция, построенная в трёхмерном координатном пространстве (), но чаще всего строят вертикальные и горизонтальные сечения зон. Вертикальные сечения представляют собой проекцию пространственной зоны на координатную плоскость (), вычисленную в предположении , . Горизонтальные сечения представляют собой проекцию пространственной зоны на координатную плоскость (), вычисленную в предположении , . Диапазоны изменения  задаются техническим заданием.

В качестве предельных значений скоростей и ускорений могут рассматриваться потребные, максимальные располагаемые характеристики, рассчитанные в п.1.3. или другие.

                                                                                                     (20)

                                                                                                 (21)

Горизонтальные сечения зон предельных скоростей представляют собой окружности радиусом и центром смещенным вдоль оси р на величину радиуса окружности (рис. 6).

 
 


 

 

 

 

 

 

 

 
 

 


Рис. 6

Горизонтальные сечения зон предельных ускорений представляют собой 4х лепестковую кривую, каждый лепесток которой расположен в одном из квадрантов, симметрично относительно биссектрисы прямого угла (рис. 7).

Рис. 7


Для скорости цели 100 м/с зона по скорости:  ;

по ускорению:  .


1.5 Расчет параметров матмодели исполнительного двигателя и статических характеристик.


Поведение двигателя постоянного тока в динамике описывается системой дифференциальных уравнений, из которых одно является уравнением равновесия напряжения на двигателе, другое - уравнение равновесия моментов.

                                                                               (22)

                                                                                            (23)

Момент двигателя Мдв, является результатом взаимодействия тока, протекающего по обмотке якоря и магнитного потока возбуждения. При постоянной величине потока возбуждения, момент двигателя равен:

                                                                                                       (24)

Се - коэффициент момента, зависит от конструктивных параметров двигателя, величины потока возбуждения:

                                                                                                  (25)

где  - число активных проводников в обмотке якоря,

 - число пар полюсов,

 - число параллельных ветвей,

 - поток возбуждения.

                                                                                                        (26)

При вращении якоря, его обмотка пересекает силовые линии, магнитное поле возбуждения наводит в ней ЭДС направленную в обратную сторону приложенного к якорю напряжения и называется противо ЭДС.

Величина ее определяется угловой скоростью вращения якоря, величиной магнитного потока возбуждения и конструктивными параметрами двигателя, при постоянной величине потока возбуждения

                                                                                                           (27)

Скорость холостого хода двигателя:

                                                                                             (28)

где  - пусковой момент;

 - номинальный момент;

 - номинальная скорость;

Электромеханическая постоянная двигателя с учётом нагрузки:

                                                                                                     (29)

                                                                                 (30)

Расчет параметров матмодели двигателя ДП 60-90-6-Р10


Скорость холостого хода                                                                       

Электромеханическая постоянная времени собственно двигателя   

Электромеханическая постоянная времени с учётом нагрузки          

Коэффициент передачи двигателя по моменту                                    

Коэффициент противо эдс                                                                       

Номинальная электрическая мощность                                                  

Номинальная механическая мощность                                                  

Максимальная механическая мощность                                                

Индуктивность якорной цепи                                                                 

Механические характеристики исполнительного двигателя при различных напряжениях имеют вид (рис. 8).

 

 

1 - механическая характеристика исполнительного двигателя при 27 В

2 - механическая характеристика исполнительного двигателя при 24 В

3 - механическая характеристика исполнительного двигателя при 12 В

Рис. 8

 

1.6 Синтез замкнутого по скорости привода и определение его характеристик

 

1.6.1 Выбор закона управления.


Проектирование привода состоит в выборе усилительных, корректирующих и сглаживающих устройств, обеспечивающих точность, быстродействие, диапазон регулирования, неравномерность хода и т.п.

Совокупность усилительных, корректирующих и сглаживающих устройств образует систему управления привода.

В исполнительных подсистемах АСЦ перспективным является применения трехпозиционных (с логическим управлением) автоколебательных систем управления. В автоколебательных системах не требуется обеспечивать устойчивость “в малом”, поэтому возможна реализация высоких коэффициентов передачи разомкнутого контура, обеспечивающая плавность движения выходного вала исполнительного механизма, которая является одной из важнейших характеристик систем слежения.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.