Рефераты. Проект ТП 35/10 кВ "Город" ИРЭС ООО "БашРЭС-Стерлитамак" для электроснабжения по...

- на тех элементах схемы, на которых установлены счетчики активной энергии для потребителей, рассчитывающихся за электроэнергию с учетом разрешенной реактивной мощности;

- на присоединениях источников реактивной мощности потребителей, если по ним производится расчет за электроэнергию выданную энергосистеме.

Основными источниками экономии электроэнергии являются: внедрение рациональных технологических режимов на базе достижений науки и техники; улучшение работы энергетического и технологического оборудования; внедрение новой техники и прогрессивных норм расхода электроэнергии.

На подстанции «Бурлы» 35/10 кВ установлены счетчики электроэнергии типа «Меркурий 230 ART2-00». Счетчики расположены в релейном отсеке ячеек КРУ 10 кВ и подключены через трансформаторы тока и трансформаторы напряжения.

Эти счетчики предназначены для измерения и учета активной и реактивной энергии в трёх- или четырёхпроводных цепях переменного тока, номинальной частоты 50 Гц. Класс точности счетчиков 0,5. Значение электроэнергии индицируется на жидкокристаллическом индикаторе, находящемся на передней панели счетчика. Обмен информацией со счетчиком происходит через интерфейс связи «САN» или модем «GSM». Счетчик может эксплуатироваться автономно или в автоматизированной системе сбора данных о потребляемой электроэнергии.



Рисунок 2.4 - Схема подключения счетчика к трехфазной трехпроводной сети с помощью трех трансформаторов напряжения и двух трансформаторов тока


Рисунок 2.5 - Схема подключения счетчика к трехфазной трехпроводной сети с помощью двух трансформаторов напряжения и двух трансформаторов тока


2.13 Молниезащита


На изоляцию электрооборудования действуют перенапряжения от грозовых разрядов, которые являются внешними перенапряжениями. В электрическом отношении удар молнией можно считать источником тока, так как он представляет собой электрический разряд между облаком и землёй или между облаками. В облаках накапливается мощные разряды восходящих воздушных потоков и интенсивной конденсации в них водяных паров. По мере концентрации зарядов увеличивается напряжённость электрического поля, и когда она достигает критического значения (20-25 кВ/см) в зависимости от высоты облака над землёй происходит грозовой разряд.

Молния может разрядиться через сопротивление электроустановки или ударить вблизи защищаемого объекта. В этом случае возникает индуцированное перенапряжение, от которого также должна быть предусмотрена защита. В частности на воздушных линиях 35 кВ, выполняемых с помощью железобетонных и металлических опор, в районах с частыми и сильными грозами должны предусматриваться молниезащитные тросы и разрядники.

Открытые токопроводы 6-10 кВ также должны быть защищены от прямых ударов молнии с помощью отдельно стоящих молниеотводов на расстоянии не менее 5 м от токопровода или с помощью тросов, подвешенных на отдельных опорах токопроводов. Заземление молниеприёмных устройств выполняется обособленными заземлителями, не имеющими соединения с заземляющими контурами опор токопровода. На шинах подстанции, к которым подключены токопроводы, устанавливаются вентильные разрядники.

Молниеотвод состоит из четырёх конструктивных элементов: молниеприёмника, несущей конструкции; токопровода; заземлителя. Молниеприёмник непосредственно воспринимает прямой удар молнии, который по токопроводу уходит на землю. Заземлитель служит для снижения потенциала элементов молниеотвода. Несущая конструкция может быть выполнина в виде деревянной, металлической или железобетонной опоры. По типу приёмников токопроводы бывают стержневые и тросовые, представляющие собой горизонтально подвешенные провода, соединенные токопроводом с заземлителями.

Тросовые молниеотводы применяют для защиты токопроводов и гибких связей ОРУ подстанции, а также для защиты воздушных линий длиной 1-3 км на подходе к подстанции.

Здания электростанций и подстанций относятся к объектам первой категории по устройству молниезащиты. Для объектов первой категории защитная зона относится к типу А.

Габариты подстанции: длина А=35 м, ширина В=30 м, высота   h=4,5 м. Принимаем исполнение защиты двумя отдельно стоящими металлическими молниеотводами стержневого типа высотой 20 м, расстояние между молниеотводами L=32 м.

По формулам для двойного стержневого молниеотвода определяем параметры молниезащиты.

Определяем высоту вершины конуса h0 ,м, стержневого молниеотвода

,                                                         (2.53)

где h - полная высота стержневого молниеотвода, м.

Определяем высоту средней части hc , м, двойного стержневого молниеотвода

,              (2.54)

где L - расстояние между двумя стержневыми молниеотводами.

Находим радиус защиты на высоте защищаемого сооружения   rх , м,

,                      (2.55)

где hх - высота защищаемого сооружения, м.

Рассчитываем радиус защиты на уровне земли r0 , м,

                               (2.56)

Определяем радиус средней части зоны двойного стержневого молниеотвода на высоте защищаемого объекта rсх , м,

                                            (2.57)

Радиус средней части зоны двойного стержневого молниеотвода на уровне земли в данном случае равен rс =r0 =21,2 м.

Определяем высоту стержневого молниеприемника hм , м,

                                                 (2.58)

Находим активную высоту молниеотвода hа ,м,

                                                 (2.59)

Рассчитываем угол защиты , град, (между вертикалью и образующей)

                                                (2.60)

В масштабе изображаем зону защиты (Рисунок 2.6)


Рисунок 2.6 - Зона защиты двойного стержневого молниеотвода


Определяем габаритные размеры защищаемого объекта в зоне молниезащиты.

Ширина В=30 м, высота h=4,5 м.

Находим угол , град,

                           (2.61)

Определяем максимально возможную длину объекта Аmax , м, при которой он находится в зоне молниезащиты

                        (2.62)

Таким образом, А<Аmax (35 м<41,36 м) и все остальные параметры молниезащиты подходят для данных габаритов подстанции, значит, объект находится в зоне молниезащиты.

Изображаем в масштабе подстанцию в зоне молниезащиты (Рисунок 2.7).



Рисунок 2.7 - Зона защиты двойного стержневого молниеотвода и защищаемый объект


Следовательно, в данном дипломном проекте применяем для молниезащиты два стержневых молниеотвода высотой 20 м.

2.14 Расчёт заземляющих устройств


Заземление - преднамеренное гальваническое соединение металлических частей электроустановки с заземляющим устройством.

Защитное заземление - заземление частей электроустановки с целью обеспечения электробезопасности.

Заземляющее устройство - совокупность заземлителя и заземляющих проводников.

Заземлителем называют металлический проводник или группу проводников, находящихся в соприкосновении с землей. Различают естественные и искусственные заземлители.

Естественные заземлители - различные конструкции и устройства, которые по своим свойствам могут одновременно выполнять функции заземлителей: водопроводные и другие металлические трубопроводы (кроме трубопроводов горючих или взрывчатых жидкостей и газов, а также трубопроводов, покрытых изоляцией от коррозии), металлические и железобетонные конструкции зданий и сооружений, имеющие надежное соединение с землей.

Под искусственными заземлителями понимают закладываемые в землю металлические электроды, специально предназначенные для устройства заземлений. В качестве искусственных заземлителей применяют: для вертикального погружения в землю стальные стержни диаметром 12-16 мм, угловую сталь с толщиной стенки не менее 4 мм или стальные трубы (некондиционные) с толщиной стенки не менее 3,5 мм; для горизонтальной укладки - стальные полосы толщиной не менее 4 мм или круглую сталь диаметром 6мм.

Заземляющие проводники служат для присоединения частей электроустановки с заземлителем.

В зависимости от расположения заземлителей относительно заземляющего электрического оборудования различают выносное и контурное заземление.

При выносном заземлители размещают в стороне от заземляющего оборудования и в этом случае корпуса оборудования находятся вне зоне растекания токов в землю.

При контурном (применяется обычно в ОРУ) заземлители располагают вокруг заземляющего оборудования, вблизи от него.

В зависимости от напряжения, на которое рассчитывается заземление и вида присоединения нейтрали сопротивление заземляющего устройства может быть:

а) не более 4 Ом в электроустановках напряжением до 1000 В с изолированной нейтралью;

б) не более 2; 4; 8 Ом в электроустановках напряжением, равным 660; 380; 220 В с глухозаземлённой нейтралью;

в) не более 0,5 Ом в электроустановках напряжением выше  1000 В с глухозаземлённой нейтралью;

г) в электроустановках напряжением выше 1000 В с изолированной нейтралью сопротивление Rз , Ом,  должно удовлетворять условию:

,                               (2.63)

где Uз =250 В, если заземляющее устройство используется

     только для установок напряжением выше 1000 В;

     Uз =125 В, если заземляющее устройство одновременно ис-

     пользуется и для установок напряжением до 1000 В;

     Iз - расчетный ток замыкания на землю, А.

Расчет заземляющих устройств сводится к расчету заземлителя.

В качестве заземлителя выбираем в дипломном проекте прутковые электроды. Выбираем грунт - глина.

Коэффициент повышения сопротивления для глины  [6, с.260, таб.7.3].

Рассчитываем удельное сопротивление грунта , Ом-м,

,                             (2.64)

где - измеренное значение удельного сопротивления грун-

     та, Ом-м; для глины  [6, с.257];

     - коэффициент повышения удельного сопротивления; для

     глины  [6, с.260, таб.7.3].

Находим сопротивление одиночного заземлиеля R0 , Ом,

                          (2.65)

Определяем ток однофазного короткого замыкания на землю     Iз ,А,

                        (2.66)

где U - номинальное напряжение, кВ;

     lв - протяженность воздушных линий, км;

     lк - протяженность воздушных линий, км..

Определяем сопротивление заземляющего устройства Rз , Ом, при условии, что оно является общим для напряжений 35кВ, 10кВ и 0,4кВ по (2.63)

Выбираем Rз=4Ом согласно ПУЭ для напряжения 0,4кВ.

Находим число n, шт, электродов

,                            (2.67)

где - коэффициент экранирования; [4, с.257, таб.7,1]

Таким образом, заземляющее устройство состоит из пяти прутковых электродов.

2.15 Спецификация на электрооборудование и материалы


Таблица 2.11 - Спецификация на электрооборудование и материалы


Номер обор

Наименование

Тип

Кол-во

1

Силовой трансформатор

ТМН 4000/35

2

2

Трансформатор тока 35 кВ

ТВ-35-100/5

4

3

Разъединитель 35 кВ

РНДЗ-2-35/1000

4

4

Трансформатор напряжения 35 кВ

НОМ-35-66

2

5

Вакуумный выключатель 35 кВ

ВБГЭ-35-12,5/630

2

6

ОПН 35кВ

ОПН-35

2

7

Провод воздушный

АС-70, l=10+25 км

1

8

Вакуумный выключатель 10 кВ

ВВ/ТЕL-10-20/800

11

9

Трансформатор тока 10 кВ

ТОЛ-10

11

10

Трансформатор напряжения 10 кВ

НАМИ-10

2

11

Кабель силовой

ААБ-10-3х50, l=4,2км

6

12

Шины алюминиевые

50х6, l=15 м

2

13

Изоляторы

ОНШ-10-5

30

14

Конденсаторная установка

УКЛ-6/10-750

2

15

Предохранитель 10кВ

ПКТН - 10

4

16

ОПН 10 кВ

ОПН-10

4

 

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ


1 Н.А. Афанасьев, М.А. Юсипов. Система технического обслуживания и ремонта оборудования энергохозяйств промышленных предприятий. М., Энергоатомиздат, 1989.

2 К.И. Дорошев. Комплектные распределительные устройства 6-35 кВ. М., Энергоиздат, 1982.

3 А.Ф. Зюзин, Н.З. Поконов, М.В. Антонов. Монтаж, эксплуатация и ремонт электрооборудования промышленных предприятий и установок. М., Высшая школа, 1986.

4 Л.Л. Коновалова, Л.Д. Рожкова. Электроснабжение промышленных предприятий и установок. М., Энергоатомиздат, 1989.

5 Е.А. Конюхова. Электроснабжение объектов. М., Высшая школа, 2001.

6 Б.Ю. Липкин. Электроснабжение промышленных предприятий и установок. М., Высшая школа, 1990.

7 Б.Г. Меньшов. Электрооборудование нефтяной промышленности. М., Недра, 1990.

8 Б.Н. Неклепаев. Электрическая часть электростанций и подстанций. М., Энергоатомиздат, 1989.

9 Прайс-листы заводов-изготовителей.

10 А.А. Фёдоров. Справочник по электроснабжению и электрооборудованию, том1. М., Энергоатомиздат, 1986.

11 А.А. Фёдоров, Л.Е. Старкова. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий. М., Энергоатомиздат, 1986.


Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.