Рефераты. Плазменное поверхностное упрочнение металлов

При плазменном упрочнении без оплавления максимальная твердость по глубине также находится на некотором расстоянии от поверхностности. В поверхно­стном слое фиксируется небольшое количество (5-10 %) остаточного аустенита.

 Обработка рессорно-пружинных сталей 65Г,80С2, 50ХФА с оплавлением и без оплавления поверхности не отличается от обработки углеродистых и легированных сталей, рис. 2.25.

Структура упрочненной зоны представляет собой высоко - дисперсный мартенсит + остаточный аустенит + карбиды.

Рис. 2.25. Распределение микротвердости по глубине

упрочненного слоя на стали 65Г при плазменном

упрочнении без оплавления (1) и с оплавлением (2).

 

Углеродистые литейные стали отличаются от деформируемой стали меньшей пластичностью и ударной вязкостью. По другим физико-химическим свойствам различий практически нет. Плазменное упрочнение проводилось как с оплавлением, так и без оплавления поверхностности. Микротвердость упрочненного слоя находится примерно на одинаковом уровне с деформируемыми углеродистыми сталями, табл. 2.12. При плазменном упрочнении этих сталей желательно проводить предварительную общую печную термообработку (нормализацию, закалку, высокий отпуск).





 

 Табл.2.13

 Микротвердость упрочненного слоя на углеродистых  литейных сталях после плазменного упрочнения



Сталь

Микротвердость Н, Мпа

Исходная структура

После печной термообработки

После плазменного упрочнения

15Л

20Л

25Л

35Л

45Л

35ГЛ

30ГСЛ

45ФЛ

30ХГСФЛ

1600-1800

1600-1800

1600-1900

2000

2100-2200

-

-

-

-

3900-4500

4000-4500

4100-4700

5100-5900

5000-6000

5100-5500

5500-6000

5900-6500

6100-6500

5000-6700*

5000-6700*

5200-6900*

6500-6800

7500-8200

6500-7300

7200-7800

8900-9500*

7500-8100

* Режим обработки с оплавлением поверхности

 

Твердые сплавы

Твердые сплавы не относятся к числу железоуглероди­стых сплавов, однако они широко используются в инструментальном производстве. Сведений об упрочнении твердых сплавов при помощи плазменного нагрева в ли­тературе (см. статью Самотугина С.С. в журнале 1997 №4, с45,-51)очень мало. Имеются данные по упрочнению твердых сплавов при помощи лазера [1, 15, 47-50]. Лазерное упрочнение твердых сплавов ВЗК (стеллит), ВК8, ВК6М, В15 повышает твердость

сплавов в зоне упрочнения на 30-50 %, глубина упрочнения составляет 100-150 мкм (разупрочненные области отсутствуют). Повышение твердости твердых сплавов по мнению [1,15, 47-50] связано со структурными и фазовыми превращениями: обра­зованием карбидов WC гек, WC куб, W2С и насыщение кобальтовой связки вольфрамом, уменьшением карбидных частиц и т.д. Увеличение содержания кобальта в сплаве повышает степень упрочнения сплавов (с оплавлением и без оплавления поверхно­сти), химический состав и исходная твердость которых представлены в табл. 2.14.

 Табл. 2.14.

Марка сплава

Химический состав, %


HRC

C

Si

Cr

Co

W

WC

TiC

TaC

Cтеллит 1

Стеллит 2

Релит

Т15К6

Т30К

ВК3

ВК6

ВК8

ВК15

2,1

2

4

-

-

-

-

-

-

1,8

2,5

-

-

-

-

-

-

-

32

28

-

-

-

-

-

-

-

59,1

63

-

6

4

3

6

8

15

5

4,5

96

-

-

-

-

-

-

-

-

-

79

66

97

94

92

85

-

-

-

15

30

-

-

-

-

-

-

-

-

-

-

-

-

-

49-50

50-51

50

76

80

76

73

71

68

 При упрочнении твердых сплавов с оплавлением поверхности (стеллит, релит) в оплавленной зоне микротвердость повышается. Высокая скорость кристаллизации в оплавленной зоне приводит к образованию высокодисперсионной структуры, обладающей высокой твердостью, рис. 2.26.

 

 Рис. 2.26. Микротвердость оплавленной зоны

 на сплавах релит (1а,б), стеллит (2), стеллит (3)

 

 Рис. 2.27. Зависимость микротвердости твердых сплавов

 от мощности плазменной струи

1 – ВК3, 2 – ВК6, 3 – ВК8, 4 – ВК15


Микровердость релита с увеличением мощности плазменной струи снижа­ется, т.к. увеличивается объем жидкой ванны и уменьшается скорость кристаллиза­ции, рис. 2.26.

Установлено, что с увеличением мощности плазменной струи микротвер­дость твердых сплавов возрастает, рис. 2.27.

Степень упрочнения возрастает с увеличением содержанием кобальта в спла­ве и размера зерен карбидной фазы. При нагреве происходит диффузионное раство­рение углерода и вольфрама в расплавленной кобальтовой связке, а при охлаждении образуются мелкодисперсные карбиды в пересыщенном твердом растворе углерода в кобальте (количество вольфрама в связке также возрастает). В связи с этим, увеличение микротвердости твердых сплавов после плазменного упрочнения зависит от степени упрочнения кобальтовой прослойки.

Упрочнение твердых сплавов сопровождается трещинообразованием, ко­торое начинается при мощности плазменной струи, превышающей некоторую кри­тическую величину, Р крит. Дальнейшее увеличение мощности приводит к сильному трещинообразованию. Для каждого твердого сплава существует оптимальная мощ­ность плазменной струи, обеспечивающая бездефектное упрочнение, и критическая мощность, соответствующая появлению дефектов после упрочнения.


Рис. 2.28. Распределение остаточных напряжений по глубине упрочненной зоны твердого сплава Т30К(1), ВК8(2), ВК15(3)

Остаточные напряжения после плазменного упрочнения твердых сплавов распределяются следующим образом, рис. 2.28: у поверхности – растягивающие напряжение, переходящие на глубине 20-30 мкм в сжимающие. Распределение остаточных напряжений по глубине и ширине упрочненной зоны зависит от скорости упрочнения, мощности плазменной струи, коэффициента перекрытия.

В проведенных исследованиях при различных режимах упрочнения твердых сплавов у поверхности возникало только растягивающие напряжение. Это связано с тем, что нагрев твердого сплава до высо­ких температур сопровождается увеличением объема и деформацией нагретого уча­стка. Причем объемная деформация

осуществляется в сторону поверхности, т.к. в других направлениях она невозможна вследствие большой массы нагретого сплава. Последующее охлаждение не возвращает вытесненный над поверхностью материал в исходное состояние. Поэтому в зоне упрочнения возникают напряжения растяжения.

Чугуны

Наряду со сталями, чугуны с самого начала работ по поверхностному упроч­нению металлов концентрированными источниками нагрева, оказались в центре внимания

[1, 9, 15, 16, 23, 38-41].

Применительно к плазменному поверхностному упрочнению, работ, посвя­щенных обработке чугуна, также очень немного. В работе [23] плазменному упроч­нению подвергался высокопрочный чугун ВЧ-60-2. Структура упрочненного слоя состояла из игольчатого мартенсита, цементита и остаточного аустенит. Рентено-структурный анализ показал, что доля остаточного аустенита составила 45 % с со­держанием углерода ( ≈1,4 мас %). Структура оплавленного участка имела диндридное строение с размером диндридов ≈ 5 баллов. Максимальная микротвердость зоны оплавления 8000-9300 Мпа.

В работе [39] плазменное упрочнение с оплавлением проводили на высоко­прочном чугуне ВЧ-42-12. Фазовый анализ зоны оплавления выявил структуру фер­рита, аустенита и цементита. Графит полностью или частично растворяется в зависимости от параметров упрочнения. При снижении скорости упрочнения и увели­чения мощности плазменной дуги, количество растворенного в расплаве графита резко увеличивается. Глубина упрочненного слоя достигает 3 мм. А максимальная микротвердость достигает 10000 Мпа [39].

Исследование серых чугунов после плазменного упрочнения с оплавлением поверхности показало, что получение отбеленных слоев без трещин возможно толь­ко при предварительном подогреве свыше 350 ° С [38]. Оплавленная зона серых чу­гунов с пластинчатым и шаровидным графитом имеет твердость HV 580-600 и структуру, характеризующуюся сильной негамогенностью: квазиледебурит + це­ментит + карбиды + мартенсит + остаточный аустенит + бейнит + сорбит + графит. Количественные соотношения структур зависят от марки серого чугуна и режимов плазменного упрочнения [38].

При плазменном упрочнении с оплавлением поверхности валкового чугуна СП-62 упрочненный слой характеризуется высокой твердостью и износостойкостью [41]. Микротвердость в зоне оплавления составляет 6000 Мпа, в зоне закалки из твердой фазы достигает максимума 6500-7000 Мпа.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.