Рефераты. Основы термодинамики

Заметим, что в уравнении Клапейрона ΔH и ΔV относятся к одноименным процессам и на одно и тоже количество вещества.

6.4.        Фазовое равновесие в конденсированных системах.

Конденсированной системой называется такая, в которой не имеется в наличии газообразная фаза, а только твердые или жидкие или те и другие вместе.

Наиболее интересным является равновесие кристалл ↔ жидкость. Поскольку теплота плавления всегда положительна, знак производной  будет зависеть от знака V. Для большинства веществV>0 (Vж > Vкр), и производная положительна, т.е. температура лавления будет расти с ростом давления. Однако у некоторых веществ (H2O, Ga, Bi, Sb, Ge, Si и др.) при плавлении происходит уменьшение объема, Vж < Vкр, и температура плавления понижается с повышением давления. Так для воды

Если предположить, что для конденсированных систем ∆H и V не зависят ни от давления, ни от температуры, то уравнение Клапейрона-Клаузиуса легко интегрируется .

Интересным является рассмотрение равновесия С (графит) →С (алмаз). Использование справочных данных для энтальпий образования и энтропий графита и алмаза дает для этого превращения , откуда видно, что при любых температурах . Но поскольку , то с увеличением давления rG должна уменьшаться и при данной температуре графит и алмаз находятся в равновесии, тогда когда rG = 0. Предположив, что V не зависит от давления, получим после интегрирования.

откуда .

Подставив численные значения rG0  и V получим Р (атм) = 9448 + 17,42 Т

При        300 К              Р=14670 атм.

               1000 К           Р=26870 атм.

               1500 К           Р=35580 атм., т.е. равновесные давления имеют порядок десятков тысяч атм.

Далее    , и мы видим, что при высоком давлении поменялся даже знак теплового эффекта. Действительно, возьмем уравнение Гиббса-Гельмгольца:

 и возьмем производную по давлению:

.

После интегрирования и ряда упрощений имеем:

.

6.5.        Интегрирование уравнения Клапейрона-Клаузиуса для процесса парообразования.

Переход жидкости в пар называют испарением, обратный процесс конденсацией. Испарение твердых тел называют возгонкой или сублимацией, обратный – кристаллизацией. Пар, который находится в равновесии с конденсированной фазой, называется насыщенным паром.

Поскольку теплота парообразования положительна, а мольный объем пара больше мольного объема конденсированной фазы, это значит, что производная в уравнении Клапейрона-Клаузиуса  т.е. с ростом температуры давление насыщенного пара увеличивается.

При температурах, далеких от критических, мольный объем пара много больше мольного объема конденсированной фазы, поэтому последним можно пренебречь, а если в этой области температур насыщенный пар подчиняется уравнению состояния идеального газа, то: , и уравнение Клапейрона-Клаузиуса можно представить в виде: .

В нешироком интервале температур теплоту испарения можно считать постоянной и взятие определенного интеграла дает: .

Таким образом, если известна v H, то, зная давление насыщенного пара вещества при одной температуре, можно рассчитать давление насыщенного пара при другой температуре. С другой стороны, определив давление насыщенного пара при двух (по крайней мере) температурах, можно рассчитать теплоту испарения.

Взятие неопределенного интеграла дает (при v H = const) или , где А и В – константы, характерные для данного вещества. Это уравнение, линейное в координатах ln p – 1/T, дает прямую линию в значительном интервале температур. Более точным является уравнение Антуана: , где А, В, С – константы.

Практически полезным может оказаться правило Трутона: энтропия испарения вещества в нормальной точке кипения (при 1 атм.) равна приблизительно 90 Дж/моль*К. Тогда в уравнение Клапейрона-Клаузиуса входит только одна константа Тнтк – температура нормальной точки кипения:

.

По этому уравнению удобно рассчитывать температуру перегонки органических соединений под пониженным давлением. Однако следует отметить, что правило Трутона соблюдается только для «нормальных» жидкостей, т.е. таких молекулы которых не ассоциированы в жидкой фазе (как у воды за счет водородных связей), а также, если пары не состоят из полимерных или диссоциированных молекул.

Для уксусной кислоты прямые определения теплоты испарения в калориметре при температуре кипения СН3СООН равной 391К дает величину 406 Дж/г. С другой стороны при 363 К давление пара 293 торр, при 391К и 760 торр. Заменив производную в уравнении Клапейрона-Клаузиуса отношением конечных приращений имеем:

.

Мольная масса СН3СООН равна 60, тогда из калориметрических данных:

.

Расхождение между этими двумя значениями связано с тем, что для получения одного моля пара необходимо испарить больше, чем 60 г СН3СООН, следовательно, мольная масса пара СН3СООН равна:

, отсюда легко сообразить, что пары уксусной кислоты в этом температурном интервале димеризованы примерно на 2/3.

Насыщенный пар обладает еще рядом интересных свойств. Рассмотрим некоторые из них.

Пусть в гетерогенной системе при температуре Т находится 1 моль вещества, причем в равновесии находятся m молей пара и 1-m молей жидкой фазы. Пусть теплоемкость пара Сп, жидкости Сж, изменяем температуру от Т до T+dT, при этом испаряется масса жидкости dm, тогда затраты тепла dQ можно представить в виде соотношения:

.

Разделим правую и левую части на Т, имеем:

.

Следовательно, справедливо: ,

после дифференцирования имеем   .

По уравнению Кирхгоффа          и          ,

т.е. теплоемкость насыщенного пара не равна изобарной теплоемкости того же газообразного вещества.

Следует также иметь в виду, что введение постороннего (инертного) газа изменяет давление насыщенного пара при неизменной температуре, даже если газ не растворяется в жидкости. Это происходит вследствие влияния общего давления на свойства конденсированной фазы (возрастает ее мольная энергия Гиббса). Действительно, при T=const:

, где Рг – давление постороннего газа, Рж давление насыщенного пара, Vж и Vп - мольные объемы жидкости и пара. Поскольку по условию равновесия  dGж =dGп, то: .

Взятие интеграла от Рг = 0 до Рг приводит к уравнению:

Поскольку дробь Vж/Vn невелика (для воды при 373 К она равна 5,9∙10-4), то влияние постороннего газа сказывается только при высоких давлениях.

Например, для воды под давлением водорода при 373 К


25

200

600

1000

Эксп.

1,018

1,19

1,66

2,35

Расч.

1,015

1,12

1,35

1,802

Глава 7. Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал.

7.1.        Определения.

Раствором называется гомогенная, молекулярно-дисперсная система, состав которой можно изменять непрерывно в некотором конечном или бесконечном интервале.

По агрегатному состоянию растворы разделяются на твердые, жидкие и газообразные. Если растворитель и растворенное вещество имеют разные агрегатные состояния, то растворителем рассматривают обычно то вещество, агрегатное состояние которого совпадает с агрегатным состоянием раствора. Если же компоненты раствора и раствор имеют одинаковое агрегатное состояние, то за растворитель считают то вещество, которого больше, хотя для термодинамики это безразлично.

Состав раствора измеряется его концентрацией. Существуют следующие основные определения концентрации:

мольная доля (х) – число молей вещества в 1 моле раствора;

моляльность (m) – число молей растворенного вещества в 1000 г растворителя;

молярность (с) – число молей растворенного вещества в 1 л раствора;

массовое содержание (р) – число грамм растворенного вещества в 100 г раствора.

В основном мы будем пользоваться мольной долей. Очевидно, что

, а .

Если М0 и М мольные массы растворителя и растворенного вещества, а d – плотность раствора, г/см3, то переход от одной концентрации к другой можно представить следующими формулами (раствор, естественно, бинарный):

7.2.        Характеристические функции многокомпонентных систем.

Первый и второй законы термодинамики, из которых следуют фундаментальные уравнения, были получены для закрытых систем, т.е. систем, процессы в которых не приводят к изменению количества компонентов. Реально же чаще встречаются системы, в которых при различных процессах изменяются количества компонентов. Это может происходить, скажем, при фазовых превращениях или вследствие протекания химической реакции. При этом может изменяться состав, как отдельных частей, так и системы в целом.

Поэтому внутренняя энергия (и другие функции состояния) открытых систем будут изменяться не только за счет сообщения системе теплоты и произведенной системой работы, но и за счет изменения состава системы. Следовательно для открытых систем характеристические функции будут функциями не только их двух естественных переменных, но и функциями числа молей всех веществ , составляющих систему:

   U = U ( S, v, n1……………….nk ),

   H = H ( S, p, n1 ………….. nk ),

   F = F ( T, v, n1…………… nk ),

   G = G ( T, p, n1……………nk ).

Полный дифференциал внутренней энергии открытой системы можем записать как:           .

Индекс nji означает, что число молей других веществ, кроме данного, не изменяется.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.