Рефераты. Кредиты от коммерческого банка на жилищное строительство

Кредиты от коммерческого банка на жилищное строительство

Задание 1


Приведены поквартальные данные о кредитах от коммерческого банка на жилищное строительство (в условных единицах) за 4 года (всего 16 кварталов, первая строка соответствует первому кварталу первого года).

Требуется:

1) Построить адаптивную мультипликативную модель Хольта-Уинтерса с учетом сезонного фактора, приняв параметры сглаживания a1=0,3; a2=0,6; a3=0,3.

2) Оценить точность построенной модели с использованием средней относительной ошибки аппроксимации.

3) Оценить адекватность построенной модели на основе исследования:

-    случайности остаточной компоненты по критерию пиков;

-    независимости уровней ряда остатков по d-критерию (критические значения d1 = 1,10 и d2 = 1,37) и по первому коэффициенту автокорреляции при критическом значении r1 = 0,32;

-    нормальности распределения остаточной компоненты по R/S-критерию с критическими значениями от 3 до 4,21.

4) Построить точечный прогноз на 4 шага вперед, т.е. на 1 год.

5) Отразить на графике фактические, расчетные и прогнозные данные.

Таблица 1

Поквартальные данные о кредитах от коммерческого банка на жилищное строительство (в условных единицах) за 4 года

t

1

2

3

4

5

6

7

8

9

10

11

2

13

14

15

16

Y(t)

28

36

43

28

31

40

49

30

34

44

52

33

39

48

58

36

Решение

Будем считать, что зависимость между компонентами тренд-сезонный временный ряд мультипликативная. Мультипликативная модель Хольта-Уинтерса с линейным ростом имеет следующий вид:

,                              (1)

где k – период упреждения;

Yр(t) — расчетное значение экономического показателя для t-гo периода;

a(t), b(t) и F(t) - коэффициенты модели; они адаптируются, уточняются по мере перехода от членов ряда с номером t-1   к   t;

F(t+k-L) - значение коэффициента сезонности того периода, для которого рассчитывается экономический показатель;

L - период сезонности (для квартальных данных L=4, для месячных – L=12).

Таким образом, если по формуле 1 рассчитывается значение экономического показателя, например за второй квартал, то F(t+k-L) как раз будет коэффициентом сезонности второго квартала предыдущего года.

Уточнение (адаптация к новому значению параметра времени t) коэффициентов модели производится с помощью формул:

;                       (2)

;                        (3)

.                                  (4)

Параметры сглаживания a1, a2 и a3 подбирают путем перебора с таким расчетом, чтобы расчетные данные наилучшим образом соответствовали фактическим (т.е. чтобы обеспечить удовлетворительную адекватность и точность модели).

Из формул 1 - 4 видно, что для расчета а(1) и b(1) необходимо оценить значения этих коэффициентов для предыдущего период времени (т.е. для t=1-1=0). Значения а(0) и b(0) имеют смысл этих же коэффициентов для четвертого квартала года, предшествующего первому году, для которого имеются данные в табл. 1.

Для оценки начальных значений а(0) и b(0) применим линейную модель к первым 8 значениям Y(t) из табл. 1. Линейная модель имеет вид:

.                                                     (5)

Метод наименьших квадратов дает возможность определить коэффициенты линейного уравнения а(0) и b(0) по формулам 6 - 9:

;                                         (6)

;                                                      (7)

;                                                          (8)

.                                                               (9)

Применяя линейную модель к первым 8 значениям ряда из таблицы 1 (т.е. к данным за первые 2 года), находим значения а(0) и b(0). Составим вспомогательную таблицу для определения параметров линейной модели:

Таблица 2

t

Y(t)

t-tcp

Y-Ycp

(t-tcp)2

(Y-Ycp)(t-tcp)

1

28

-3,5

-7,625

12,25

26,6875

2

36

-2,5

0,375

6,25

-0,9375

3

43

-1,5

7,375

2,25

-11,0625

4

28

-0,5

-7,625

0,25

3,8125

5

31

0,5

-4,625

0,25

-2,3125

6

40

1,5

4,375

2,25

6,5625

7

49

2,5

13,375

6,25

33,4375

8

30

3,5

-5,625

12,25

-19,6875

S

36

285

0

0

42

36,5


                          

                                 

Уравнение (5) с учетом полученных коэффициентов имеет вид: Yp(t)=31,714+0,869·t. Из этого уравнения находим расчетные значения Yр(t) и сопоставляем их с фактическими значениями (табл. 3). Такое сопоставление позволяет оценить приближенные значения коэффициентов сезонности I-IV кварталов F(-3),    F(-2), F(-1) и F(0) для года, предшествующего первому году, по которому имеются данные в табл. 1. Эти значения необходимы для расчета коэффициентов сезонности первого года F(1), F(2), F(3), F(4) и других параметров модели Хольта-Уинтерса по формулам 1 - 4.

Таблица 3

Сопоставление фактических данных Y(t) и рассчитанных по линейной модели значений Yp(t)

t

1

2

3

4

5

6

7

8

Y(t)

28

36

43

28

31

40

49

30

Yp(t)

32,583

33,452

34,321

35,190

306,060

36,929

37,798

38,667


Коэффициент сезонности есть отношение фактического значения экономического показателя к значению, рассчитанному по линейной модели. Поэтому в качестве оценки коэффициента сезонности I квартала F(-3) может служить отношение фактических и расчетных значений Y(t) I квартала первого года, равное Y(1)/Yр(1), и такое же отношение для I квартала второго года (т.е. за V квартал t=5) Y(5)/Yр(5). Для окончательной, более точной, оценки этого коэффициента сезонности можно использовать среднее арифметическое значение этих двух величин.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.