Курсовая работа по дисциплине:
Конструирование изделий из композиционных
материалов
Киль легкого самолета
Казань, 2008 г.
Содержание:
1. Назначение киля и требования к нему………………………………..………3
2. Техническое описание киля………………………………..………………….3
3. Конструктивно – силовая схема киля…………………………………….…..3
4. Нормирование нагрузок………………………………………….……………5
5. Проектировочные расчеты………………………………………………….....7
I. Построение эпюр……………………………………………………..…………7
II. Проектировочный расчет на прочность……………………………………10
Список используемой литературы……...……………………..……………….13
1. Назначение киля и требования к нему
К оперению самолета относятся горизонтальное и вертикальное оперение.
Горизонтальное оперение служит для обеспечения продольной, а вертикальное – путевой устойчивости и управляемости самолета.
К вертикальному оперению самолета предъявляются следующие основные требования:
- обеспечение путевой устойчивости и управляемости самолета на всех режимах полета, в том числе и на режимах, близких к αкр (посадка, штопор);
- наименьшее лобовое сопротивление;
- возможно меньшее затенение оперения крылом, фюзеляжем, гондолами двигателей, а также одной части оперения другой;
- исключение возможности возникновения вибраций;
- простота монтажа и демонтажа оперения на самолете.
2. Техническое описание киля
Киль летательного аппарата – часть хвостового оперения самолёта, расположенная в вертикальной (или наклонной) плоскости и предназначенная для обеспечения путевой устойчивости.
Киль представляет собой консольную балку. К задней кромке киля на шарнирах крепится руль направления полёта.
В конструкцию киля входят два лонжерона. Первый располагается позади носка киля, а второй перед передней кромкой руля направления. Первый лонжерон необходим для крепления киля к хвостовой части фюзеляжа, обычно здесь используются шарнирные узлы крепления, которые устанавливаются на поясах лонжеронов.
На заднем (втором) лонжероне расположены узлы навески руля направления.
3. Конструктивно – силовая схема киля
Конструктивно-силовая схема киля – двухлонжеронная.
Лонжероном воспринимаются изгибающий момент и перерезывающие силы. Пояса лонжерона берут осевые усилия от изгибающего момента, а стенки погонные касательные усилия от перерезывающей силы. Кроме этого в стенке лонжерона могут действовать погонные усилия от крутящего момента. Крутящий момент воспринимается только замкнутыми контурами.
Этот лонжерон целесообразно размещать в месте максимальной строительной высоты. Обычно это совпадает с местом положения оси вращения.
Лонжерон обычно представляет собой балку таврового или швеллерного типа. Стенка лонжерона изготовлена из трехслойного КМ (сотовый заполнитель). Причем несущие слои стенки выкладываются под углом ± 45˚, так как они работают на сдвиг. А пояса лонжерона выклеиваем из лент стеклоткани Т – 10, практически однонаправлены. Пояс будет работать на сжатие и не извернется, т.к. одну кромку будет держать стенка лонжерона, а другая кромка упирается в трехслойную обшивку и не выпадает оттуда. Несущие слои тоже укладываются под углом ± 45˚, это делается для того, что бы повысить жесткость агрегата (деформация в 3 раза меньше). Обшивку в носике целесообразно сделать однослойной, т.к. большая кривизна, нагрузку выдержит, а вся обшивка будет трехслойная.
Рис. 1.
4. Нормирование нагрузок
Самолет имеет двухкилевое ВО установленное симметрично относительно плоскости хорд крыла.
Рис. 2.
Общая площадь вертикального оперения:
Площадь одного вертикального оперения
.
Площадь крыла
Вес самолета
Максимально допустимая скорость полета
Максимально допустимый скоростной напор
f = 1,5; nЭmax = 4.
Во всех случаях нагружения распределение нагрузок по размаху оперения принимается пропорционально хордам, а нагрузки параллельные хордам, из-за малой величины не учитываются.
Расчетный случай: маневренная нагрузка.
Нагрузка вертикального оперения, возникающая при маневре в горизонтальной плоскости, может быть определена по формуле
где SB.0. - площадь вертикального оперения.
, Н.
В соответствии с АП23 п.23.445 «Разнесенное (двухкилевое) вертикальное оперение» 65% вычисленной нагрузки приходиться на один киль.
Удельная нагрузка на вертикальное оперение (нагрузка на единицу площади) равна:
В соответствии с "Нормами прочности спортивных планеров" эксплуатационная удельная нагрузка меньше 800н/м2 не берется.
Расчетная удельная нагрузка прикладывается «к части ВО, находящейся выше горизонтального, а 80% этой нагрузки - к части находящейся ниже».
Расчетная удельная нагрузка прикладывается «к части ВО, находящейся ниже горизонтального, а 80% этой нагрузки - к части находящейся выше».
Нагрузка киля рассчитывается пропорционально его площади:
, Н,
где - площадь киля.
Нагрузка по размаху (высоте) киля распределяется пропорционально его хорде:
где bк – хорда киля в сечении, тогда
Распределение нагрузки по хорде вертикального оперения в случае маневренной нагрузки и остановки двигателей производится так, как показано на рисунке:
Рис. 3.
5. Проектировочные расчеты
I. Построение эпюр
Киль представляет собой консольную балку. Расчетная схема киля – защемленная балка, нагруженная распределенной нагрузкой q и реакциями от руля Rt, приложенными в узлах его навески. За ось z принимаем ось жесткости. В проектировочном расчете делаем допущение, что перерезывающая сила воспринимается стенками лонжеронов, распределяясь между ними пропорционально квадратам их высот, а крутящий момент воспринимается замкнутым контуром, образованным обшивкой и стенкой заднего лонжерона.
Для киля центр давления
Рис. 4.
Определение изгибающих моментов и перерезывающих сил киля.
Рис. 5.
, Н/м
Расчет ведем с концов киля. Для левого участка (рис. 5.) имеем:
Для правого участка (рис. 5.) имеем:
zр м.
0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,65
z м.
0,70
0,80
0,90
1,00
1,10
1,20
1,30
Q н.
91
137
189
248
314
386
465
506
-398
-365
-302
-244
-192
-145
-103
-66
Mи н*м.
0
11
28
49
77
112
155
179
139
120
87
59
37
21
8
Рис. 6.
Определение крутящих моментов киля.
Расчет ведем с концов киля.
Погонный крутящий момент
Для левого участка (рис. 5.):
Для правого участка (рис. 5.):
Страницы: 1, 2