Знайдемо втрати при виключенні транзистора:
;
Визначимо втрати на опорі втік-витік при відкритому транзисторі:
Підрахуємо загальні втрати на транзисторі :
Розрахунок ланки зворотнього зв’язку
З таблиці вихідних даних мінімальна напруга стабілізації керованого стабілітрона TL431 рівна VREF=2,5В,а його мінімальний струм стабілізації IkAmin=1мА.
З вихідних даних оптопари TLP521 її спад напруги на діоді VFD=1,2В; максимальний прямий струм через діод IFmax=10мА;
З вихідних даних мікросхеми UC3842 опорна напруга рівна VRefint=5,5В; максимальна напруга зворотнього зв’язку дорівнює VFBmax=4,8В, а внутрішній опір - RFB=3,7кОм.
Знайдемо максимальний вхідний струм DA2:
Розрахуємо мінімальний вхідний струм DA2:
Схема ланки зворотнього зв’язку представлена на рис. 1.5.2.
Рис. 1.5.2. Схема ланки зворотнього зв’язку на
керованому стабілітроні TL431.
Знайдемо величину опору резистору R56:
,
де R57=4,99кОм, а R58=5кОм – рекомендовані значення з таблиці характеристик TL431.
Визначимо опір резистора R54:
,;
Рис. 1.5.3. Структурна схема всієї ланки зв’язку.
Розрахуємо перехідні характеристики схеми.
Внутрішній коефіцієнт передачі DA2:
Внутрішній коефіцієнт передачі дільника ланки зворотнього зв’язку :
Знайдемо коефіцієнт передачі силової частини:
де ZPWM – крутизна характеристики ΔVFB / ΔlD;
Коефіцієнт передачі вихідного фільтра:
де RESR – ємнісний опір конденсатора.
Коефіцієнт передачі ланки регулятора:
Перехідні характеристики при мінімальному та максимальному навантаженні :
Визначимо вихідний опір блока живлення при максимальному навантаженні:
Визначимо вихідний опір блока живлення при мінімальному навантаженні:
Знайдемо частоту зрізу при максимальному навантаженні:
а також мінімальному навантаженні:
Коефіцієнт передачі ланки зворотнього зв’язку :
, ;
Коефіцієнт передачі дільника ланки зворотнього зв’язку:
Вихідний імпеданс на відрізку часу ton:
Коефіцієнт передачі на граничній частоті:
де: RL=3,6Ом – вихідний індуктивний опір, LP=12,6мкГн – індуктивність первинної обмотки трансформатора, fg=3000Гц – частота на якій проводиться розрахунок, f0=76,18 – гранична частота при максимальному навантаженні .
Загальний коефіцієнт передачі:
Оскільки GS(ω)+Gr(ω)=0, то:
Звідси знайдемо коефіцієнт передачі ланки регулятора:
Gr(ω)=0-(- GS(ω))=17,2дБ;
Коефіцієнт передачі регулятора:
Звідси знайдемо опір резистора R55:
Нижня частота передачі ланки зворотнього зв’язку при C37=0:
Знайдемо ємність конденсатора C37:
1.5.2. Електричний розрахунок схеми імпульсного стабілізатора.
Імпульсний стабілізатор напруги побудуємо по однотактній підвищуючій схемі без гальванічної розвязки - rising transducer.
Схему керування побудуємо на контролері UC3842. Його внутрішня структура показана на рис.4.1.
UC3842 - інтегральна схема, яка призначена для управління и контролю роботи імпульсних стабілізаторів напруги побудованих по різноманітних однотактних схемах: з гальванічною розвязкою - однотактній зворотньоходовій та прямоходовій схемах, без гальванічної розвязки – понижаючого , повишаючого та інвертуючого перетворювачів. Мікроконтролер може безпосередньо керувати роботою силового ключа, контролювати вихідну напругу (стабілізувати її при зміні вхідної напруги.)
Рис. 1.5.4. - Структура контролера UC3842.
Дана мікросхема має наступні можливості:
- блокування роботи при перенапрузі;
- запуск роботи при малому рівні потужності;
- стійкий підсилювач помилки;
- захист від перенапруги на виході;
- перехідний спосіб функціонування;
- схема вимірювання струму та напруги;
- внутрішній генератор.
Організація живлення мікроконтролера
Прецензійна ширини забороненої межі напруги та струму побудована в середині контролера, щоб гарантувати добре регулювання. Компаратор перенапруження з гістерезисом и дуже низьким струмом живлення дозволяє мінімізувати схему запуску та живлення рис.4.2а. Живлення ІМС береться з вторинної обмотки трансформатора Т3 та стабілізується стабілітроном до рівня 12В рис.4.2б.
а) внутрішній компаратор по живленні.
б) схема підключення по живленні.
Рис. 1.5.5. Схема організації живлення ІМС UC3842.
Тактовий генератор
Тактовий генератор UC3842 (рис. 4.3 ) розрахований на роботу в частотному діапазоні від 10кГц до 1Мгц. В нашому випадку він працюватиме на частоті 100кГц, так як це оптимальна частота для роботи всього перетворювача.
Рис. 1.5.6. Тактовий генератор, форма напруги та робочий цикл.
Розрахуємо значення Rt та Ct:
(4.1.2)
де: f=100кГц, - задана робоча частота.
Ct = 0.01мкФ, - рекомендоване значення ємності, вибирається в межах 0.001…0.1 мкФ.
Підсилювач помилки і блок датчика перенапруги.
Вхід підсилювача помилки, через відношення двох зовнішніх резисторів, зв'язаних з вихідною шиною, що дозволяє за рахунок зворотного зв'язку підвищувати вихідну постійну напругу тим самим здійснювати регулювання напруги.
Пристрій забезпечено ефективним захистом від перенапруження, реалізовано на тому ж виводі що й регулятор напруги постійного струму.
Коли збільшиться вихідна напруга, відповідно і збільшиться напруга на виводі 2 IMC. Різницеве значення струму протікає через конденсатор. Величина струму визначається всередині мікроконтролера і порівнюється з еталонним значенням 40 мкА. Якщо значення буде перевищено то відповідно це відобразиться на керуванні роботою силового ключа, тривалість імпульсів відкритого стану ключа стає меншим, що призводить до зниження вихідної напруги.
Рис. 1.5.7. Підсилювач помилки.
Компаратор струму и тригер який керує модуляцією перемикань
Рис. 1.5.8. Схема компаратора струму.
Компаратор струму постійно слідкує за напругою на резисторі Rs і порівнює її з опорною напругою (1В) на іншому вході компаратора.
Вихідний буфер ІМС UC3842.
Схема керування являє собою вихідний буферний каскад, вихідний струм цього каскаду - ±1А. Цей каскад може керувати роботою силового ключа на великій частоті.
Рис. 1.5.9. Вихідний буфер UC3842
Розрахунок елементів імпульсного стабілізатора.
Оскільки імпульсний стабілізатор складається з двох однакових пів плеч (стабілізатор додатної напруги та стабілізатор відємної напруги )то доцільно буде порахувати тільки один із них, розраховані значення елементів перенести на інший. Для розрахунку виберемо стабілізатор додатної напруги.
Вихідні дані для розрахунку для електричного розрахунку:
- Вхідна напруга Uвх = 65...150 В;
- Вихідна напруга Uвих = 150 В;
- Зміна вихідної напруги DU = 5В;
- Вихідна потужність Рвих = 300 Вт;
- Частота перемикання силового ключа fs = 100 кГц.
Схема коректора потужності приведена на рис.4.8.
Рис. 1.5.10. Схема імпульсного стабіліатора
Розрахунок ємності вхідного конденсатора
Визначимо мінімальну ємність вхідного конденсатора С2:
Сin LF ³ Р0 /(2·p·f ·V0·η) (4.10)
де - f – частота перемикання силового ключа (100 кГц)
- V0 - вихідна напруга (150 В)
- η=0.9 - прогнозований ККД перетворювача
- Р0 – вихідна потужність – 300 Вт
Сin LF = 300 / (2·3,14·25000·0.9·150) =82.7 мкФ
Розрахунок ємності вхідного високочастотного конденсатора
Вхідний високочастотний конденсатор фільтра (C4) повинен зменшити шуми, які виникають при високочастотних перемиканнях силового ключа, що в свою чергу викликає імпульси струму в індуктивності.
Cin HF = Irms /(2·p·f·r·Vin min) (4.7)
де - f - частота перемикання (100 кГц);
- Іrms - вхідний високочастотний струм;
- Vin min – мінімальна вхідна напруга (65 В);
- r – коефіцієнт високочастотних пульсацій вхідної напруги, який знаходиться між 3 і 9 %. Приймаємо r = 7%.
Іrms = Рout / Uin min; (4.8)
Іrms = 300 / 65 = 4,64 А;
Сin = 4,64/(2×3,14×100000×7×65) = 0.0065 мкФ.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22