Рефераты. Генотоксические эффекты у детей - подростков из Чебулинского района Кемеровской области

Группа А содержит 3 пары длинных хромосом (1-3), каждую из которых можно легко индивидуализировать. Хромосомы 1,3 являются метацентриками, аромосома 2 - субметацентрична;

Группа В содержит две пары хромосом (4-5). Они короче хромосом из группы А и являются субметацентриками;

Группа С содержит 6 пар аутосом (6-12), все хромосомы с субмедиальным расположением центромеры, средних размеров, их трудно индивидуализировать. К этой группе по размеру относится Х-хромосома, которая отличается тем, что заканчивает синтез ДНК позднее других;

Группа D содержит 3 пары хромосом (13-15). Хромосомы средних размеров имеют почти терминальное расположение центромеры - акроцентрики. Все они имеют спутники, морфологически похожи;

Группа Е состоит из 3 пар коротких хромосом (16-18). Хромосомы 16-й пары являются метацентриками. Хромосомы 17-й и 18-й пары, похожи между собой и являются субметацентриками;

Группа F имеет 2 пары коротких метацентрических хромосом (19-20), которые неотличимы друг от друга;

Группа G состоит из 2-х пар хромосом (21-22). Это очень короткие акроцентрические хромосомы со спутниками, трудно различимы, хотя несколько отличаются по величине и морфологии. К ним примыкают У-хромосома, которая несколько длиннее и имеет на длинном плече вторичную перетяжку (Дубинина, 1977).

В настоящее время для более тонкой дифференциации каждой из хромосом человека разработаны новые методы. Однако для исследования спонтанного хромосомного мутагенеза достаточно применения методики рутинной окраски хромосом, в результате которой все хромосомы перечисленных выше групп в исследуемой метафазной пластинке равномерно окрашиваются и хорошо идентифицируются.


 

1.1.2. Основные типы хромосомных перестроек.



Все хромосомные аберрации, возникающие в соматических клетках человека и регистрируемые на стадии метафазы, разделяются на две основные группы: аберрации храматидного типа и аберрации хромосомного типа. Согласно наиболее распространенному  мнению, аберрации хромосомного типа отражают повреждение хромосомы в пресинтетической стадии (G1 - фаза), когда хромосома реагирует как однонитчатая  структура, тогда как аберрации хроматидного типа возникают при повреждении хромосомы на стадии ее двух нитей (фаза S и G2) (Buckton K., Evans H., 1973).


Аберрации хромосомного типа.


Исследования соматических клеток в метафазе показало, что цитологически можно различить 7 видов хромосомных аберраций. Типы  аберраций, указанных на рисунке 2 в пунктах а - д, образуются в одной хромосомы и могут быть названы внутрихромосомными обменами, а аберрации, указанные в пунктах е и ж, сопровождаются обменом участками между различными хромосомами и называются межхромосомными обменами.

а) Ацентрические фрагменты (терминальные делеции) представляют собой спаренные хроматиды, которые располагаются параллельно друг другу, но не имеют центромеры.

б) Малые фрагменты (интерстициальные, изодиаметрические делеции) - спаренные хроматиды меньшего размера, чем ацентрические фрагменты, имеющие характерный вид спаренных хроматиновых шариков.

в) Ацентрические кольца - спаренные хроматиды в форме кольца, не содержащие центромеры. Различия между малыми фрагментами и кольцами часто бывают произвольными, поскольку они основаны лишь на длине не достигающего интерстициального участка хромосомы.

г) Центрические кольца - спаренные хроматиды в форме кольца, имеющие центромеру.

д) Перецентрические инверсии - результат инверсии сегмента, содержащего центромеру, с последующим его включением в ту же хромосому.

е) Симметрические межхромосомные обмены (реципроктные транслоказы) - аберрации, возникающие в результате обмена между двумя хромосомами, причин дистальные участки двух хромосом транслоцируются от одной к другой.

ж) Асимметричные межхромосомные отмены (дицентрические, полицентрические аберрации). Возникают в результате обмена между двумя или несколькими хромосомами, происходящие таким образом, что проксимальные участки хромосом соединяются, образуя дицентрическую или полицентрическую структуру с сопутствующим ацентрическим пробелом.


Аберрации хроматидного типа.

 

Аберрации хроматидного типа представлены на рисунке 3. К ним относятся хроматидные разрывы (фрагменты хроматид) и хроматидные обмены. Фрагменты могут быть концевыми интерстициальными и точковыми. Если произошли изохроматидный разрыв и поврежденные концы сестринских хроматид соединились, то из-за притяжения сестринских хроматид на остальной части они остаются лежать параллельно и потому имеют вид дуги. Хроматидные фрагменты, малоудалённые от места повреждения, необходимо дифференцировать от ахроматических пробелов, представляющих собой неокрашенные участки хромосом (частки локальной деспирализации хромосом). О фрагментах говорят в трех ситуациях:

1. Фрагмент сдвинут по длине. 2. Перевернут. 3. Сдвинут по оси.

Обмены хроматидного типа крайне многообразны. Они могут быть между хроматидами одной хромосомы, двух и более хромосом. Кроме того, различают полные и неполные, симметричные и ассиметричные обмены. Все это создает возможность образование большого числа форм обменов. При межхромосомных обменах образуются фигуры три-, квадри-, и мультирадианов, или неправильных форм. Структура обменной аберрации зависит от величины обмениваемых участков, гомологичности хромосом, идентичности плеч, симметричности (эуцентричности) и полноты (рецепроктности) обмена.



1.1.3.  Механизмы возникновения хромосомных перестроек

 

Хромосомные перестройки - это обширный и гетерогенный класс наследственных изменений, включающий выпадение (потери). Добавления (удвоение, умножение) участков хромосом, а также их перемещения в пределах одной хромосомы или между хромосомами.

Исторически эксперименты и теоретически построения по индуцированному мутагенезу значительно опередили работы по выяснению природы генетического материала хромосом. Однако после 1953, когда в работе Д. Уотсона и Ф. Крика (D. Watson, F. Crick,1953) было сделано предположение о структуре молекулы ДНК, о полуконсервативном характере об репликации и о возможной молекулярной природе мутаций, открылась возможность для конкретных исследований как характера повреждений в ДНК, индуцируемых различными мутагенами, так и реальных механизмов репарации этих повреждений. В монографии Н.П. Дубинина (1978) приведены сведения о повреждениях ДНК различными мутагенами.

Обширный класс алкилирующих соединений может производить алкилирование (присоединение метильной или этильной группы) в некоторых позициях к азотистым основаниям (чаще всего к гуанину) или к фосфатным группам полинуклиотидной нити. Алкилированные азотистые основания за счет гидролиза выщепляются из цепочки ДНК, в следствии чего появляются апуриновые или апиримидиновые сайты. В таких сайтах далее может идти гидролиз нестабильных дезоксирибозидных остатков, и в результате возникают однонитевые разрывы в ДНК. Разрывы могут быть и следствием гидролиза после алкилирования фосфатных групп.

Бифункциональные алкилирующие соединения (серный и азотный иприт,митомицин C) своими двумя алкильными группами могут алкилировать сразу два гуанина из двух комплементарных нитей ДНК, образуя при этом внутримолекулярную сшивку.

Такие сшивки - типичный результат воздействия на ДНК также азотистой кислоты и ее солей.

Как видно, большинство первичных изменений в ДНК, вызываемых мутагенами, сами по себе еще не мутации, т.е. не являются изменениями в последовательности нуклеотидов. Эта последовательность может быть изменена только после прохождения поврежденной молекулы через этап репликации. Так, при репликации молекулы, в одну из нитей которой встроена молекула акридинового красителя, против этой поврежденной нити строиться комплементарная ей цепочка, содержащая лишний нуклеотид, вставленный против места, где в  поврежденной цепи интеркалирована молекула акридина. Такая вставка нуклеотида, закрепляющаяся в обеих нитях молекулы после еще одной репликации - это уже мутация, обозначаемая как “сдвиг рамки считывания” (frame shift). Сшивки в молекуле ДНК обычно летальны, т.к. не позволяют осуществлять нормальную репликацию из-за невозможности расплетения нитей в месте сшивки. (Смирнов В.Г. 1991).

Однако в работах Р. Кимбола (R. Kimball, 1966) указывалось, что клетка способна к репарации повреждений в ДНК, вызванных действием мутагенов.

В большинстве случаев первичных повреждений после первой же репликации (если они не были репарированны до репликации) напротив них во вновь синтезированной нити ДНК появляется брешь. Ю.А. Митрофанов и Г.С. Олимпиенко (1980) именно состояние такого разрыва в одной из комплементарных нитей ДНК и считают потенциальным повреждением, которое при одних  условиях может быть репарировано, а при других - превращается в двунитевый разрыв в молекуле ДНК (хроматидный разрыв).

A. Bender с соавторами ( Bender et al., 1973) считают, что при разрыве в одной из нитей двунитевой молекулы ДНК неповрежденная нить может разрезаться напротив разрыва ДНК-азой, специфичной для однонитевой ДНК.

Полагается, что такой механизм материализует идею резонансного мутагенеза - перенося повреждения с поврежденной нити на неповрежденную.

По мнению Смирнова В.Г. (1991) обменные перестройки при воздействии самыми разными мутагенами возникают благодаря одному и тому же механизму, характеризующемуся воссоединением концов появляющихся разрывов. Условием этого является тесная пространственная ассоциация между участками хроматид одной хромосомы или разных хромосом. При наличии такой ассоциации возникающие в хроматидах разрывы воссоединяются подобно тому, как это происходит при кроссинговере  (Беляев И.Я., Акифьев А.П., 1988).

Разные исследователи неоднократно обращали внимание на сходство между процессом кроссинговера и образованием обменных перестроек при контакте хроматид. Впервые такую мысль высказали А.С. Серебровский и Н.П. Дубинин (1929), а затем “Обменную гипотезу” о механизме возникновения перестроек предложил С. Ривелл (S. Revell, 1955, 1974). Результаты, полученные И.Я. Беляевым и А.П. Акифьевым (1988), свидетельствуют о плодотворности сопоставления этих двух процессов.

Ассоциации, между участками хроматид одной хромосомы или разных хромосом, могут устанавливаться между районами хромосом, содержащими высокоповторяющиеся последовательности ДНК. Такие последовательности сосредоточены в гетерохроматиновых районах хромосом - в прицентромерном и интерколярном структурном гетерохроматине. Именно для гетерохромотиновых районов неоднократно описаны цитологически наблюдаемые ассоциации не гомологичных хромосом.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.