Рефераты. Диагностика карбюраторных двигателей

    При автоматизированном диагностическом заключении измеренные величины амплитуд и их смещений сравнивают при помощи логического устройства с эталонами, хранящимися в блоке памяти машины.

    Диагностика по параметрам картерного масла даёт возможность определить темп изнашивания деталей двигателя, качество работы воздушных и масляных фильтров, герметичность системы охлаждения, а также годность самого масла. Для этого необходимо периодически отбирать из картера пробы масла, измерять концентрацию в нём продуктов износа и кремния, определять вязкость и содержание воды. Превышение допустимых норм по концентрации в масле металлов укажет на неисправную работу сопряжённых деталей, превышение нормы содержания кремния - на неисправность фильтров, присутствие воды - на неисправность системы охлаждения, а пониженная вязкость позволит судить о годности масла.

    Возможность диагностики двигателя по концентрации продуктов износа (свинца, хрома, железа, алюминия и др.) в картерном масле обусловлена зависимостью её уровня только от интенсивности изнашивания соответствующих деталей (подшипников, колец, цилиндров) двигателя. Это означает, что по истечении некоторого времени работы масла в двигателе (при практическом постоянстве объёма масла, интенсивности очистки и угаре) концентрация каждого из продуктов износа в масле достигает определённого уровня и стабилизируется. Убыль и пополнение взвешенных в масле частиц уравновешивается. Этот уровень будет тем выше, чем больше скорость изнашивания деталей двигателя. Так как скорость изнашивания при исправных системах фильтрации и охлаждения характеризует исправность сопряжения трущихся пар механизма, то по уровню концентрации можно выявить скрытые и назревающие отказы.

    Уровень концентрации к продуктов износа в масле после наступления его стабилизации определяется выражением

                                                          

где      с - интенсивность поступления в масло продуктов износа;

          вф - интенсивность удаления продуктов износа маслоочистителем;

          ву - интенсивность убыли продуктов износа за счёт угара масла.

    Для диагностики двигателя по концентрации продуктов износа в картерном масле (каждого металла в отдельности) применяют спектральный анализ, обладающий весьма высокой чувствительностью.

    Спектральный анализ заключается в следующем. Пробу картерного масла сжигают в высокотемпературном пламени вольтовой дуги и регистрируют спектр при помощи  спектрографа  или  автоматизированной  фотоэлектрической  установки. Пары продуктов износа дают линейчатый спектр, который подвергают качественному и количественному анализу.

    Качественный анализ состоит в обнаружении спектральных линий, свидетельствующих о присутствии в картерном масле металлов изнашивающихся деталей, а количественный - в определении интенсивности почернения спектральных линий. Плотность почернения линий измеряют при помощи микрофотометра. Полученный результат переводят в абсолютные единицы концентрации, используя тарировочные графики. График строят для каждого элемента по результатам анализа эталонов (проб масла с известным содержанием элемента). В процессе эксплуатации на каждый автомобиль ведут график изменения уровня концентрации продуктов износа металлов наиболее ответственных деталей двигателя (например, цилиндров - Fe, поршней - Al, колец - Cr, подшипников коленчатого вала - Pb), а также следят за концентрацией кремния, вязкостью и другими параметрами масла. Таким образом наблюдая за темпом изнашивания  основных  деталей, за  появлением в масле кремния и годностью масла, заблаговременно  выявляют  отказы  механизмов и систем, и прогнозируют ресурс работы двигателя.

    Менее точно, но относительно быстро и просто можно диагностировать двигатель по концентрации ферромагнитных частиц в его картерном масле. Такую диагностику осуществляют при помощи электрического прибора, измеряющего концентрацию продуктов износа железа по изменению индуктивности масла за счёт присутствия в нём ферромагнитных частиц.


                                                7.2.  Система охлаждения.      


    Характерными неисправностями системы охлаждения являются подтекания и недостаточная эффективность охлаждения двигателя. Первое происходит из-за повреждения шлангов и их соединений, сальника водяного насоса, трещин, порчи прокладок, а второе - вследствие образования накипи, внутреннего или внешнего загрязнения радиатора, повреждения его трубок, поломок водяного насоса, неисправности термостата, пробуксовки ремня вентилятора или его обрыва. В результате  этих неисправностей двигатель перегревается во время работы.

    Диагностика системы охлаждения заключается в определении теплового состояния системы и её герметичности, а также в обнаружении неисправностей её элементов. О тепловом состоянии системы судят по склонности двигателя к перегреву (превышению температуры охлаждающей жидкости   + 850С) при его нормальной нагрузке.

    Эффективность работы радиатора можно проверить по разности температур охлаждающей жидкости в его верхней и нижней частях (она должна быть в пределах 8-120С).

    Герметичность системы охлаждения (после визуальной проверки подтеканий) проверяют опрессовкой, создавая в верхней не заполненной части радиатора давление около 0,6 кГ/см2. Для этого применяют прибор, состоящий из воздушного насоса, манометра и устройства для соединения с заливной горловиной радиатора. При отсутствии подтеканий показания манометра стабильны. Если цилиндры двигателя сообщаются с системой охлаждения (имеются трещины в блоке цилиндров или повреждена прокладка), стрелка манометра будет колебаться.

    Натяжение ремня вентилятора проверяют силой, необходимой для его  прогиба в пределах 10-20 мм (прилагаемая сила должна быть 3-4 кГ).   

    Термостат проверяют в случае, если наблюдается замедленный прогрев двигателя после пуска или, наоборот, быстрый его перегрев. Для этого термостат погружают в ванну с водой. Воду подогревают, контролируя температуру термометром. Момент начала и конца открытия клапана должен происходить соответственно при температурах + 65-70 и + 80-850С. Неисправный термостат заменяют.

    Регулировочные работы по системе охлаждения включают: натяжение до нормы ремня вентилятора, устранение течи в соединениях с шлангами и через сальник водяного насоса, а также промывку системы охлаждения от осадков и удаление из неё накипи. Систему промывают струёй воды под давлением 2-3 кГ/см2  при снятом термостате. Направление промывки должно быть противоположным циркуляции охлаждающей жидкости во время работы двигателя.

    Накипь удаляют для улучшения теплообмена стенок системы охлаждения. По данным НИИАТа, при толщине накипи 1 мм интенсивность охлаждения снижается на 25%, мощность на 6%, а расход топлива увеличивается на 5%. Накипь удаляют при помощи химических растворов. Хорошие результаты даёт промывка раствором соляной кислоты с ингибитором, смачивателем и пеногасителем. Указанный раствор заливают в систему охлаждения, пускают двигатель и прогревают раствор до + 600С. Через 10-15 мин раствор сливают, а систему промывают горячей водой, предварительно сняв термостат. Для нейтрализации остатков кислоты в промывочную воду добавляют нейтрализатор (соду, двухромокислый калий).


                                                  7.3.  Система питания.


    От технического состояния механизмов и узлов системы питания двигателя в значительной степени зависят основные показатели его работы - мощность и экономичность, а следовательно, и динамические качества автомобиля.

    Диагностические и регулировочные работы по системе питания направлены на своевременное выявление и устранение неисправностей механизмов и узлов, обеспечивающих надёжный пуск двигателя и его работу с заданными мощностными и экономическими показателями.

    Диагностика систем питания карбюраторных двигателей проводится методами ходовых и стендовых испытаний и поэлементной оценки технического состояния механизмов и узлов систем.

    При ходовых испытаниях определяется расход топлива автомобилем при пробеге на определённом маршруте или при движении автомобиля с постоянной скоростью на коротком мерном участке (1 км).

    В автотранспортных предприятиях наиболее широко применяется метод проверки расхода топлива на маршруте, так как он не требует сложной организации и специального оборудования.

    Характер маршрута должен соответствовать условиям эксплуатации данного автомобиля (например, маршрут по городским улицам для автомобиля-такси, маршрут по загородным дорогам для междугородных автобусов). Средняя протяжённость маршрута - 5-10 км. Обычно выбирают маятниковый маршрут, т.е. такой, на котором автомобиль движется до конечного пункта и возвращается в гараж по одной и той же дороге. При этом поддерживают одинаковую техническую скорость. Количество израсходованного топлива  измеряют с помощью мерного бачка, соединённого шлангом с входным штуцером топливного насоса. Длину пройденного пути фиксируют по спидометру.

    Для проверки расхода топлива на коротком мерном участке выбирают ровный участок дороги протяжённостью 1 км с малым движением. Автомобиль на подходе к участку разгоняют до скорости 40-60 км/ч и поддерживают эту скорость на всём протяжении участка. Как и при испытаниях на маршруте, измерение количества израсходованного топлива проводят с помощью мерного бачка.

    В обоих случаях для обеспечения необходимой точности измерений заезды повторяют 2-3 раза, а расход топлива подсчитывают по формуле

                                                        

где       Qср - среднее из всех заездов количество топлива, израсходованное на                                                                                

                    маршруте или мерном участке, л;

               L - длина маршрута или мерного участка, км.

    Метод ходовых испытаний имеет ряд недостатков. К их числу относится значительная трудоёмкость работы, трудность обеспечения одинаковых дорожных и климатических условий (а следовательно, и трудность сопоставления полученных результатов). Кроме того, при ходовых испытаниях не представляется возможным точно учесть нагрузку двигателя.

    Поэтому системы питания автомобиля целесообразно диагностировать на стенде с беговыми барабанами.

    При диагностике на стенде определяют расход топлива двигателем (л/100 км) при заданной нагрузке и проводят проверку качества рабочего процесса по анализу состава отработавших газов двигателя, который у карбюраторных двигателей  осуществляют с помощью газоанализаторов. Принцип работы газоанализатора НИИАТ заключается в том, что отработавшие газы двигателя проходят через специальную измерительную камеру прибора. В камере происходит дожигание имеющегося в газах углекислого газа СО. При этом изменяются температура платиновой нити, помещённой в камере, и её электрическое сопротивление. Нить нагревается, и электрическое сопротивление изменяется тем больше, чем больше в продуктах сгорания содержится СО. Изменение электрического сопротивления определяется с помощью мостовой схемы.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.