Рефераты. Жидкие кристаллы как основа развития современных технологий

Экран LCD - это экран просветного типа, то есть экран, который подсвечивается с обратной стороны лампой белого цвета, а ячейки основных цветов (RGB - красный, зеленый, синий), расположенные на трех панелях соответствующих цветов, пропускают или не пропускают через себя свет в зависимости от приложенного напряжения. Именно поэтому происходит определенное запаздывание картинки (время отклика), особенно заметное при просмотре быстродвижущихся объектов. Время отклика в современных моделях разнится от 15 мс (миллисекунды, 1мс - одна тысячная секунды) до 40 мс и зависит от типа и размера матрицы. Чем меньше это время, тем быстрее меняется изображение, нет явлений шлейфа и наложения картинок.

Время работы лампы для большинства LCD-панелей почти на начальной яркости - 60 000 часов (этого хватит примерно на 16 лет при просмотре телевизора по 10 часов в день). Для сравнения: у плазменных телевизоров яркость за то же время уменьшается гораздо сильнее, а для кинескопных телевизоров (выгорает люминофор) порог - 15000-20 000 часов (приблизительно 5 лет), потом качество заметно ухудшается.

Примером совершенства может служить экран LCD телевизора LG RZ-23LZ20 который передает около 17 миллионов цветов, с высоким разрешением 1280х768 пикселей, с контрастностью 400:1 и яркостью в 450 кд/м. Это - прекрасный образец жидкокристаллической технологии.

Угол обзора у жидкокристаллических телевизоров последних моделей достигает 160-170 градусов по вертикали и горизонтали, а это делает проблему гораздо менее острой, чем она была несколько лет назад.

Недостатком жидкокристаллических экранов является наличие неработающих пикселей. Неработающие пиксели - пиксели, которые постоянно включены в каком-то одном состоянии и не меняют свой цвет в зависимости от сигнала. Разные производители допускают различное количество неработающих пикселей на экране, о чем пишут в инструкциях по использованию товара. Например, в инструкции может быть написано "если на панели вы обнаружили не более четырех неработающих пикселей, то панель считается полностью работоспособной". В жидкокристаллических мониторах вообще не допускается наличие неработающих пикселей, так как на монитор мы смотрим с гораздо более близкого расстояния, чем на телевизор, и сразу можем разглядеть этот "мусор".

 3. О будущих применениях жидких кристаллов

3.1. Перспективы применения жидких кристаллов

Многие оптиче-ские эффекты в жидких кристаллах, уже освоены техникой и используются в изделиях массового производства. Например, всем из-вестны часы с индикатором на жидких кристаллах, но не все еще знают, что те же жидкие кристаллы использу-ются для производства наручных часов, в которые встро-ен калькулятор. Тут уже даже трудно сказать, как на-звать такое устройство, то ли часы, то ли компьютер. Но это уже освоенные промышленностью изделия, хотя всего десятилетия назад подобное казалось нереальным. Перспективы же будущих массовых и эффективных при-менений жидких кристаллов еще более удивительны. По-этому стоит рассмотреть некоторые технические идеи применения жидких кристаллов, которые пока что не реализованы, но, возможно, в ближайшие несколько лет послужат основой создания устройств, которые станут для нас такими же привычными, какими, скажем, сейчас являются персональные компьютеры.

3.7. Управляемые оптические транспаранты

Рассмотрим пример достижения научных исследований в процессе создания жидкокристаллических экранов, отображения информации, в частности жидкокристаллических экранов телевизоров. Известно, что массовое создание больших плоских экранов на жидких кристаллах сталкивается с трудностями не принципиального, а чисто технологиче-ского характера. Хотя принципиально возможность со-здания таких экранов продемонстрирована, однако, а связи со сложностью их производства при современной технологии их стоимость оказывается очень высокой. По-этому возникла идея создания проекционных устройств на жидких кристаллах, в которых изображение, получен-о на жидкокристаллическом экране малого размера могло бы быть спроектировано в увеличенном виде на обычный экран, подобно тому, как это происходит в кинотеатре с кадрами кинопленки. Оказалось, что такие устройства могут быть реализованы на жидких кристаллах, если использовать сэндвичевые структуры, в кото-рые наряду со слоем жидкого кристалла входит слой фотополупроводника. Причем запись изображения в жидком кристалле, осуществляемая с помощью фотопо-лупроводника, производится лучом света.

Принцип записи изображения очень прост. В отсутст-вие подсветки фотополупроводника его проводимость очень мала, поэтому практически вся разность потенциа-лов, поданная на электроды оптической ячейки, в кото-рую еще дополнительно введен слой фотополупровод-ника, падает на этом слое фотополупроводника. При этом состояние жидкокристаллического слоя соответствует отсутствию напряжения на нем. При подсветке фотопо-лупроводника его проводимость резко возрастает, так как свет создает в нем дополнительные носители тока (свободные электроны и дырки). В результате происхо-дит перераспределение электрических напряжений в ячейке - теперь практически все напряжение падает на жидкокристаллическом слое, и состояние слоя, в частно-сти, его оптические характеристики, изменяются соответ-ственно величине поданного напряжения. Таким образом, изменяются оптические характеристики жидкокристал-лического слоя в результате действия света. Ясно, что при этом в принципе может быть использован любой электрооптический эффект из описанных выше. Практи-чески, конечно, выбор электрооптического эффекта в та-ком сэндвичевом устройстве, называемом электрооптическим транспарантом, определяется наряду с требуемыми оптическими характеристиками и чисто технологическими  причинами.

Важно, что в описываемом транспаранте изменение оптических характеристик жидкокристаллического слоя происходит локально - в точке засветки фотополупро-водника. Поэтому такие транспаранты обладают очень вы-сокой разрешающей способностью. Так, объем информа-ции, содержащейся на телевизионном экране, может быть записан на транспаранте размерами менее 1х1 см2.

Описанный способ записи изображения, помимо все-го прочего, обладает большими достоинствами, так как он делает ненужной сложную систему коммутации, т.е. систему подвода электрических  сигналов,  которая применяется в матричных экранах на жидких кри-сталлах.

3.7. Пространственно-временные модуляторы света

Управляемые оптические транспаранты могут быть исполь-зованы не только как элементы проекционного устрой-ства, но и выполнять значительное число функций, свя-занных с преобразованием, хранением и обработкой оп-тических сигналов. В связи с тенденциями развития ме-тодов передачи и обработки информации с использова-нием оптических каналов связи, позволяющих увеличить быстродействие устройств и объем передаваемой инфор-мации, управляемые оптические транспаранты на жид-ких кристаллах представляют значительный интерес и с этой точки зрения. В этом случае их еще принято назы-вать пространственно-временными модуляторами света (ПВМС), или световыми клапанами. Перспективы применения ПВМС в устройствах обработки опти-ческой информации определяются тем, насколько се-годняшние характеристики оптических транспарантов мо-гут быть улучшены в сторону достижения максимальной чувствительности к управляющему излучению, повыше-ния быстродействия и пространственного разрешения световых сигналов, а также диапазона длин волн излуче-ния, в котором надежно работают эти устройства. Как уже отмечалось, одна из основных проблем - это проблема быстродействия жидкокристаллических элементов, однако уже достигнутые характеристики модуляторов света позволяют совершенно определенно утверждать, что они займут значительное место в системах обработки оптической информации.

Прежде всего, отметим высокую чувствительность модуляторов света к управляющему световому потоку, которая характеризуется интенсивностью светового по-тока. Кроме того, достигнуто высокое пространственное разрешение сигнала - около 300 линий на 1 мм. Спектральный диапазон работы мо-дуляторов, выполненных на различных полупроводнико-вых материалах, перекрывает длины волн от ультрафио-летового до ближнего инфракрасного излучения. Очень важно, что в связи с применением в модуляторах фото-полупроводников удается улучшить временные характе-ристики устройств по сравнению с быстродействием соб-ственно жидких кристаллов. Так, модуляторы света за счет свойств фотополупроводника могут зарегистриро-вать оптический сигнал продолжительностью всего меньше 1 с. Разумеется, изменение оптических характеристик жидкого кристалла в точке регистрации сигнала проис-ходит с запаздыванием, т.е. более медленно, в соответ-ствии с временем изменения оптических характеристик жидкого кристалла при наложении на него (или снятии) электрического поля.

Какие же, кроме уже обсуждавшихся функций, могут выполнять модуляторы света? При соответствующем под-боре режима работы модулятора они могут выделять контур проектируемого на него изображения. Если кон-тур перемещается, то можно визуализировать его дви-жение. При этом существенно, что длина волны записы-вающего изображения излучения и считывающего излу-чения могут отличаться. Поэтому модуляторы света по-зволяют, например, визуализировать инфракрасное из-лучение, или с помощью видимого света модулировать пучки инфракрасного излучения, или создавать изобра-жение в инфракрасном диапазоне длин волн.

В другом режиме работы модуляторы света могут выделять области, подвергнутые нестационарному осве-щению. В этом режиме работы из всего изображения выделяются, например, только перемещающиеся по изо-бражению световые точки, или мерцающие его участки. Модуляторы света могут использоваться как усилители яркости света. В связи же с их высокой пространственной разрешающей способностью их использование оказывается эквивалентным усилителю с очень большим числом каналов. Перечисленные функциональные возможности оптических модуляторов дают основание использовать их в многочисленных задачах обработки оптической инфор-мации, таких как распознавание образов, подавление по-мех, спектральный и корреляционный анализ, интерфе-рометрия, в том числе запись голограмм в реальном мас-штабе времени, и т. Д. Насколько широко перечислен-ные возможности жидкокристаллических оптических мо-дуляторов реализуются в надежные технические устрой-ства, покажет ближайшее будущее.

3.4. Оптический микрофон

Только что было рассказано об управлении световыми потоками с помощью света. Однако в системах оптической обработки информации и связи возникает необходимость преобразовывать не только световые сигналы в световые, но и другие самые разнообразные воздействия в световые сигналы. Такими воздействиями могут быть давление, звук, температура, деформация и т. Д. И вот для преобразования этих воз-действий в оптический сигнал жидкокристаллические ус-тройства оказываются опять-таки очень удобными и пер-спективными элементами оптических систем.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.