Рефераты. Воздействие радиационного излучения на операционные усилители

Усилительные параметры каскада ОЭ: его коэффициент уси-ления по напряжению входное и выходное сопротивление изме-няются главным образом из-за уменьшения коэффициента пере-дачи тока базы N. Высокочастотные параметры каскада ОЭ при облучении улучшаются из-за уменьшения , и Ск.

В каскаде ОИ отклонение тока стока ДIк от своей номиналь-ной величины, вызываемое радиационными эффектами, опреде-ляется изменением смещения на затворе, сдвигом напряжения отсечки и изменением статической крутизны характеристики.

Усилительные характеристики каскада ОИ изменяются из-за изменений крутизны характеристики транзистора S, его входного и выходного сопротивлений. Постоянные времени

вх СвхRг ; вsх Сн.выхRсн

характеризующие высокочастотные свойства каскада ОИ, могут изменяться, если наблюдается заметное изменение паразитных емкостей Свх и Сн.вых которые складываются из межэлектродных емкостей транзистора, емкостей монтажных площадок и емкости нагрузки.

Дифференциальные каскады.

Принято считать, что стойкость аналоговых интегральных микросхем к спецвоздействиям оп-ределяется, прежде всего, радиационными эф-фектами во входных каскадах, в качестве кото-рых, как правило, применяют дифференциаль-ные каскады (за исключением трансимпедансных ИОУ). В дифференциальном каскаде приведенное ко входу откло-нение выходного напряжения от своей номинальной величины, вызываемое действием эффектов смещения и ионизации, опреде-ляется формулой

(где Kвл.ип коэффициент влияния нестабиль-ности напряжений источников питания, обусловленных радиаци-онными эффектами)

Представленное соотношение применимо для диффе-ренциальных каскадов, включенных в аналоговые ИМС с изоля-цией диэлектрической пленкой. В ИМС с изоляцией р-п-переходом в ряде случаев требуется учет паразитного р-п-р-транзистора, образуемого базовым и коллекторным слоями рабо-чего транзистора и подложкой ИМС.

Благодаря высокому коэффициенту по-давления синфазных сигналов, образуемых пере-падами ионизационных токов как на входах, так и на выходах, разность выходных напряжений и входной ток сдвига из-меняются незначительно. Поэтому отклонение выходного напряжения от нуля определяется не входным дифференциальным каскадом, а реакцией последующих каскадов.

Существенно меняется входной ток смещения; это ток, который определяется не разностью токов, а их средним значени-ем, изменение которого определяется изменением N. Отклонение выходного напряжения происходит также из-за радиацион-ной нестабильности тока в эмиттерах.

В аналоговых ИМС с дифференциальным каскадом на входе в качестве пары используют униполярные транзисторы с управ-ляющим p-n-переходом. При этом токи затворов определяются токами обратносмещенных p-n-переходов -- затворов. Как из-вестно, МДП-транзисторы обладают меньшим входным током, чем транзисторы с управляющим p-n-переходом. Однако МДП-транзисторы очень чувствительны к импульсным помехам, по-этому при использовании их во входных каскадах требуется за-щита входов диодами, токи утечки которых сводят на нет пре-имущества МДП-транзисторов. Необходимость диодной защиты отпадает в ИМС с внутрисхемной связью входа аналоговой части схемы с предшествующими схемами. При этом использование МДП-транзисторов в качестве дифференциальной пары позволя-ет заметно уменьшить Iвхсм и Iвх.сд определяемые токами утечки диэлектрических затворов.

Действие переходных ионизационных эффек-тов можно оценить при помощи моделей диффе-ренциальных каскадов на биполярных транзис-торах (рис. 1а) и униполярных транзисторах с уп-равляющим p-n-переходом (рис. 16).

Рис. 1. Модели дифференциальных каскадов для анализа переходных ионизационных эффектов: (а) - на биполярных транзисторах; (б) - на униполярных транзисторах с управляющим p-n-переходом.

В этих схемах фототоки источников стабилизированного тока I0 непосредственно не учитываются, так как их дей-ствие подавляется (так же как действие всяких синфазных помех). Косвенное влияние этих фо-тотоков, приводящее к изменению тока I0 в эмит-терах или истоках транзисторных пар, удобно учитывать наряду с другими причинами измене-ния этого тока, представив, что при облучении

ток I0 изменяется в (1 + ф) раз (где ф - коэффи-циент изменения тока I0).

В модели на рис.1,а действие фототоков, об-разуемых потоком носителей через коллектор-ные переходы, которые генерируются в базах транзисторных пар Т1 и Т2, учитываются посред-ством источников тока Iфкп1 и Iфкп2 (влиянием фо-тотоков, образуемых потоком носителей через эмиттерные переходы Т1 и Т2, пренебрегаем). Фототоки, которые возникают в коллекторных слоях транзисторов Tl, T2 и прилегающих к ним областях подложки с изолирующими р-п-переходами, учитываются источниками токов, шунтиру-ющих коллекторные и эмиттерные переходы па-разитных транзисторов ТП1, ТП2 и источниками фототоков Iфип1, Iфип2. Для упрощения моделей аналогичные паразитные транзисторы, связан-ные диффузионными резисторами, не показаны.

В модели на рис.1,б учтены фототоки, возни-кающие в каналах транзисторов Tl, T2 и прилегающих к каналам слоях подложки и изолирующих р-n-переходах. Действие ионизирующих излуче-ний приводит к отклонению от нуля выходного напряжения дифференциального каскада.

Влияние ионизационных эффектов, вызывае-мых воздействием электронного, высокоэнерге-тического нейтронного и -излучений, проявля-ется прежде всего в виде заметного увеличения токов утечки и канальных токов, что приводит к росту входных токов смещения Iвх см и сдвига Iвх сд. Происходит также уменьшение коэффициента пе-редачи тока базы N, влияющее как на точностные характеристики каскада, так и на его усилитель-ные параметры. Может происходить заметное из-менение выходных потенциалов каскада вследст-вие роста тока I0 стабилизированного источника.

Анализ влияния поверхностных ионизацион-ных эффектов требует более подробной инфор-мации о топологических и технологических осо-бенностях изготовления элемента ИМС, а также об изменениях заряда в приповерхностных слоях. Для этого обычно используют тестовые структуры.

Как показывает анализ, приведенное к входу импульсное отклонение собственного выходного напряжения дифференциального каскада (а не всего ИОУ) от номинальной величины оказыва-ются не столь заметными, несмотря на сущест-венное увеличение входных токов ИОУ при им-пульсном воздействии.

В литературе отмечается, что отклонение вы-ходного напряжения ИОУ от нуля при спецвоз-действии обусловлено не изменением выходных потенциалов дифференциальных каскадов, а в ос-новном происходит из-за нарушения режима по постоянному току выходных повторителей, при-чем это отклонение имеет одну и ту же поляр-ность, т.е. выходное напряжение отклоняется в сторону положительного источника питания. Экс-периментально было проверено, действительно ли влияние фототоков в выходных повторителях яв-ляется определяющим.

Влияние ИИ на шумовые характеристики дифф-каскада.

В каскадах на биполярных транзисторах в области средних и высших частот шумо-вого спектра, где преобладают дробовой шум токораспределения iш.к и тепловой шум объемного сопротивления базы eш.б, при облучении уровень шумов возрастает в результате деградации коэффициента пере-дачи тока базы и увеличения объемных сопротивлений.

Влияние теплового шума сопро-тивления коллекторного слоя eшк, а также шумовых сигналов паразитного транзистора iшфи, iшfи не так существенно. В области низ-ших частот преобаладают шумы со спектром 1/f, а также низкочастотные шумы фототоков. Анализ низкочастотных шу-мов усложняется тем, что их изменение при облучении определяется не только объемными эффектами, но и поверхностными. Действие ионизирующих излучений приводит не тоолько к повышению уровня низкочастотных шумов, но также к увеличению граничной частоты fш, т.е. к сдвигу их спектральной плотности в область более высоких частот.

В дифференциальных каскадах на униполярных транзисторах в об-ласти средних и высших частот, где преобладают тепловой шум ка-нала iшс и дробовой шум тока затвора iш.з шумы при облучении воз-растают из-за уменьшения крутизны характеристики транзистора S и увеличения тока затвора вследствие роста тока генерации в управ-ляющем р-n-переходе. Возрастают также низкочастотные шумы, об-условленные флуктуациями заряда токов генерации--рекомбинации в обедненном слое изолирующего р-n-перехода. При этот относитель-ное увеличение шумового сопротивления практически не зависит от частоты.

Уровень собственных шумов каскада повышается из-за шумов фото-токов, особенно при высоких импедансах источника сигнала.

Уровень шумов дифференциального каскада зависит также от схе-мы подачи входного сигнала и съема выходного напряжения. На практи-ке нередко подают сигнал только на один из входов каскада По отношению к этому входу интенсивность первичного шумового на-пряжения возрастает.

Сравнение дифференциальных каскадов на биполярных и униполяр-ных транзисторах по их шумовым показателям в области средних час-тот показывает, что в первых из них при работе от источников с Rг >> 103 Ом уровень шума выше. Следует иметь в виду, что каскады на униполярных транзисторах менее критичны к выбору оптималь-ного сопротивления источника входного сигнала, а поэтому изме-нение условия оптимальности при облучении не приводит к дополни-тельному увеличению шума.

Радиационные эффекты в ИОУ.

Воздействие ИИ на параметры ИОУ.

Интегральные операционные усилители (ИОУ) представляют собой высококачественные прецизионные усилители, которые относятся к классу универсальных и многофункциональных аналоговых микро-схем. Радиационная стойкость аналоговых ИМС определяется не только влиянием ионизирующих излучений на характеристики элемен-тов микросхемы, но она зависит также от структуры ИМС и схемотехнических особенностей. Поскольку боль-шинство современных аналоговых ИМС построены по структуре ИОУ, то на их примере можно выяснить влияние радиационных эффектов на характеристики аналоговых микросхем.

Специализированные ИОУ частного применения, к числу ко-торых относятся микросхемы с повышенным входным сопротив-лением, прецизионные и микромощные ИОУ, быстродействую-щие усилители [11], обычно более чувствительны к остаточным радиационным эффектам, так как схемотехнические и технологи-ческие меры, применяемые для достижения предельных возмож-ностей по каким-либо параметрам, как правило, приводят к сни-жению их радиационной стойкости. Особенно чувствительны к воздействию облучения ИОУ при работе в микрорежиме. Это объясняется тем, что в микрорежиме деградация параметров транзисторов происходит при более низких флюенсах.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.