Із третього закону фотоефекту (для кожної речовини існують порогові значення частоти та довжини хвилі світла, які відповідають межі існування фотоефекту; світло з меншою частотою та більшою довжиною хвилі фотоефекту не викликає) випливае поняття «червона межа фотоефекту» (оскільки це порогове значення завжди ближче до червого світла, то йому дали назву червона межа фотоефекту).
Зрозуміло, що червона межа фотоефекту існує завдяки притягуванню електронів до ядер. Разом з тим, останній закон не можна пояснити на основі уявлення про світло як неперервні плавні коливання у вакуумі-ефірі: такі хвилі мали довго розгойдувати електрони до того моменту, коли швидкість останніх стала б достатньою для відриву від металу.
Повне пояснення фотоефекту належить А.Ейншейну, який використав ідею німецького фізика М.Планка про те, що світло випромінюється і поширюється окремими порціями - квантами (або інша назва фотони). Для обчислення енергії кванта світла М.Планк запропонував просту формулу
е= hн. (2.5)
А. Ейнштейн висловив припущення, що фотоефект відбувається внаслідок поглинання фотоном одного кванта, а інші кванти не можуть брати участь у цьому процесі. Тоді енергія одного кванта світла (фотона) витрачається на подолання бар'єру (виконання роботи виходу, відриву від матеріалу) і надання кінетичної енернії фотоелектрону.
Це дозволило йому записати закон збереження енергії для процесу - рівняння Ейнштейна для фотоефекту
(2.6)
де н -- частота світла, h -- стала Планка, m -- маса електрона, v -- його швидкість, A -- робота виходу.
Тобто за червоною межою фотоефекту можна визначити роботу виходу.
2.3 Вимірювання роботи виходу електронів через контактну різницю потенціалів
Якщо два провідники А і В з істинними значеннями роботи виходу ца і цв при однакових температурах знаходяться в електричному контакті, то електрони тектимуть в одному напрямі, поки не буде досягнутий рівноважний стан, при якому рівні Фермі двох провідників стануть однаковими. Іншими словами, електрохімічні потенціали електронів в двох провідниках повинні стати рівними. Тоді потенціали у точках X і У поблизу поверхонь провідників А і В буде рівний:
, (2.7)
(2.8)
де - електрохімічний потенціал. Очевидно, що
(2.9)
Величина називається контактною різницею потенціалів (надалі КРП) між провідниками А і В і може бути позитивною, негативної або нулем. Якщо провідники знаходяться при різних температурах, то до правої частини рівняння (2.9) необхідно додати термоелектричну складову.
Припустимо тепер, що провідники А і В не знаходяться в безпосередньому контакті один з одним, а якимсь чином зв'язані між собою електрично і що потенціал введений в зовнішній ланцюг.
(2.10)
Тоді Рівняння (2.10) є основою для різних методів вимірювання КРП, які можна розділити на дві групи. В першій групі методів провідники А і В знаходяться в безпосередньому контакті, а потенціал , що прикладається, підбирається так, щоб різниця потенціалів приймала задане значення , яке може бути обчислене на основі інших експериментальних параметрів. В цих умовах і для визначення достатньо одного експерименту. В цій групі найважливішими є метод Кельвіна і метод статичного конденсатора. Іншими методами є магнетронный метод Оутлі, метод насиченого діода і метод пробою. В другій групі методів провідник А спочатку порівнюється з третім провідником С, для чого до А і С прикладається такий потенціал V1 щоб вимірювана величина (звичайно сила струму) стала рівною
деякому фіксованому значенню. Потім за тих же умов провідник А замінюється провідником В і таким же чином знаходиться потенціал V2. Тоді
Отже, для визначення необхідно поставити два експерименти. До цієї групи належать метод електронного пучка Андерсона, а також метод діода з обмеженим просторовим зарядом.
2.4 Вимірювання роботи виходу електронів методом динамічного конденсатора
Найближчим до способу, що заявляється, по технічній суті і результату, що досягається, є відомий і в даний час найвизнаніший спосіб визначення роботи виходу електрона шляхом вимірювання контактної різниці потенціалів (КРП). заснований на тому, що два металеві провідники А (досліджуваний провідник) і Б (провідник порівняння), розміщені у вакуумі, утворюють плоский конденсатор ємністю С. Через різну природу провідників А і Б між ними виникає різниця потенціалів і заряд Q, який за відсутності зовнішньої напруги рівний:
(2.11)
Якщо до провідників А і Б вміщенним у вакуум, через зовнішню систему управління прикласти різницю потенціалів , то тоді). Примусова (зовнішня) зміна ємності конденсатора системою управління на величину ДС (зміна відстані між провідниками) призводить до зміни його заряду на величину ДQ:
(2.12)
Фізична суть способу полягає в тому, що якщо системою контролю, управління і реєстрації електричних і інших технічних характеристик провідників А і Б, створюючих конденсатор і замкнутих через зовнішній ланцюг, підібрати величину так, щоб зник потік заряду при примусовій зміні його місткості, тобто, щоб ДQ стало рівним нулю, то тоді = .
Контроль зміни ДС проводять при періодичному механічному коливанні однієї з пластин конденсатора щодо іншої. При цьому потік зарядів ДQ приймає форму змінного струму, який детектує і посилюється.
Підібрану експериментально вищевикладеним способом величину прийнято називати контактною різницею потенціалів провідників А і Б, яка при помноженні на заряд електрона чисельно (в · [эВ]) відображає різницю робіт виходу електрона у вакуум провідників А і Б. Точность методу - ±0.001эВ.
До основних недоліків цього способу визначення роботи виходу електрона у вакуум можна віднести:
· достатню складність экспериментальной установки і тривалість технологічного циклу робіт, витікаючі з вимоги розміщення провідників А і Б в робочому об'ємі з достатньо глибоким вакуумом;
· практичну неможливість позбавлення від адсорбції деяких газів і пари води на поверхню досліджуваного провідника, яка може призводити іноді до різких змін величин робіт виходу електрона для одного і того ж металу, що достатньо переконливо показане в довіднику;
· виникнення так званого «ефекту (потік зарядів ДQ приймає форму змінного струму) дробу» поблизу нуля змінного струму, що детектує і усилюваного в експерименті, прояв якого накладає обмеження на точність вимірювання величини контактної різниці потенціалів провідників, а значить і на величину роботи виходу електрона у вакуум конкретного провідника А, якщо наперед відома робота виходу електрона у вакуум для провідника Б;
2.5 Вимірювання роботи виходу електронів методом статичного конденсатора
Цей метод, запропонований Дельхаром і ін., в принциповому відношенні схожий з методом Кельвіна, проте відрізняється методом компенсації КРП. Провідники А і В знову утворюють плоский конденсатор, проте замість того, щоб коливатися щодо один одного, вони залишаються нерухомими. Визначається витік зарядів з конденсатора, обумовлена КРП між пластинами, і підбирається зовнішня різниця потенціалів для компенсації цього витоку.
Для цього методу дуже істотно, щоб потенціал був прикладений за час, менший постійній часу RC - контура, що складається з експериментального конденсатора і зовнішнього опору R. Останній вибирається приблизно 1012 Ом. Необхідна чутливість приблизно 0,25 мВ.
2.6 Вимірювання роботи виходу електронів методом електронного пучка Андерсона
У цьому методі, запропонованому Андерсоном, пучок повільних електронів з гармати падає нормально на поверхню провідника А. Площа, досліджувана пучком, мала в порівнянні з розмірами провідника А, але велика в атомних масштабах. Будується характеристична крива залежності струму мішені від потенціалу на ній. Потім мішень міняється: або змінюється стан поверхні мішені, або берется інший провідник В, і знову будується характеристична крива. Відносний зсув двох кривих на осі напруг дорівнює КРП між двома станами поверхні А або між провідниками А і В.
Точність методу в значній мірі залежить від паралелі характеристичних кривих. Якщо вони непаралелі по всій своїй довжині, то неможливо визначити, який відносний зсув. Відсутність паралелі може бути обумовлений значним неконтрольованим потоком електронів із сторонніх поверхонь, неспівпаданням положень провідників А і В або ефектом плямистості однієї або обох мішеней, причому плями можуть бути розташовані по-різному. Перші два джерела помилок можуть бути усуненені поліпшенням техніки експерименту. Що ж до ефекту плямистості, то метод, мабуть, дає тільки середнє значення роботи виходу поверхні, опромінюваної пучком, а оскільки він застосовується майже виключно до напилених у вакуумі плівок, різниця в плямистості окремих плівок не може бути причиною відхилення від паралелі характеристичних кривих.
3. Вимірювання роботи виходу електронів методом Кельвіна
Однією з характеристик поверхнвеого стану, як вже наголошувалося, є робота виходу електрона. Роботу виходу електрона можна виміряти за допомогою багатьох сучасних спектроскопічних методів, але найточнішим є метод Кельвіна. Схема вимірювань по методу Кельвіна представлена на рис. 4.
Рис.4. Схема для вимірювання роботи виходу електронів методом Кельвіна. 1- досліджуємий матеріал, статична пластина, 2 - електрод порівняння (відома робота виходу), динамічна пластина.
Суть методу Кельвіна полягає в наступному. Вібруючий електрод (2) з відомою роботою виходу вібрує поблизу досліджуваної поверхні (1) утворюючи плоский конденсатор. Різниця робіт виходу між електродом
порівняння і зразком проявляє себе як різниця поверхневих потенціалів
між двома поверхнями. Згідно простому співвідношенню
(3.1)
де - контактна різниця потенціалів (КРП) або різниця робіт виходу, q
- заряд поверхонь, С - ємність.
Оскільки електрод коливається, ємність змінюється періодично з
часом. Похідна заряду за часом вимірюється як амплітуда змінного струму, тобто
(3.2)
Підсилювач налаштований на сигнал, заданий електродом, що коливається.
Звичайно така схема працює як компенсаційна: постійна напруга змінюється до тих пір, поки вимірюваний струм І не стане рівним нулю.
Відповідне нульовому значенню струму постійна напруга рівно і протилежно по знаку КРП. Вимірювання роботи виходу таким чином - це, по суті, пряме вимірювання потенціалу подвійного слоя.
Метод є надзвичайно чутливим до забруднення поверхні, тому вимірювання на будь-яких об'єктах, окрім благородних металів і чистих поверхонь, зв'язані із значними труднощами.
Висновки
Останніми роками, сильно збільшилася необхідність техніки у вимірюванні роботи виходу. Розвиток термоелектронних пристроїв прямого перетворення, поліпшення параметрів фоточутливих детекторів, потреба в стабільних катодах, що працюють при все більш високому тиску і все більш низьких температурах, необхідність підвищення надійності іонних джерел в масс-спектрометрії - ось лише декілька чинників, що стимулювали інтенсивні дослідження роботи виходу.
Одним із способів вимірювання роботи виходу електрона із матеріалів є метод Кельвіна, який ґрунтується на контактній різниці потенціалів та динамічному конденсаторі.
Список використаних джерел
1. Грин М. (перевод Киселёва В.Ф.) Поверхностные свойства твердых тел - М.: Мир, 1972. - 432 с.
2. Борисов С.Ф. Межфазная граница газ-твердое тело: структура, модели, методы исследования. - Екатеринбург.:УГУ, 2001. - 240 с.
3. Методы анализа поверхностей/ Под ред. А. Зандерны. - М.: Мир, 1979;
4. Межфазовая граница газ -твердое тело/ Под ред. Э. Флада. - М.:Мир, 1970.
5. Исследование основных законов фотоэффекта и определение постоянной Планка / под ред. Айданова О.С., Сверчинская С.А. - Иркутск: ИГУ, 1999.
6. Шимони К. Физическая электроника. М.: Мир, 1977.
7. H.A. Поклонский H.И. Горбачук H.M. Лапчук Физика электрического контакта металл/полупроводник. - Минску:БГУ, 2003. - 52 с.
Страницы: 1, 2