Рефераты. Використання технології цифрового діаграмоутворення в системах мобільного зв'язку

Рис. 1.9. Проект ADAMO: 6-панельна ЦАР БС.

На зазначений стандарт орієнтований також проект SATURN (Smart Antenna Technology in Universal Roadband wireless Networks) [15]. Метою проекту є дослідження можливостей застосування ЦАР у системах мобільного зв'язку UMTS для збільшення пропускної спроможності каналів зв'язку при експлуатації в умовах завмирань.

Що ж стосується альтернативних проектів, які безпосередньо конкурують з TSUNAMI і SUNBEAM, то серед них потрібно насамперед відзначити проект SFIR (Spatial-Filtering for Interference Reduction) [16], що проводився в 1997-99 рр. дослідницькою групою мобільних комунікацій технічного університету м. Відня в кооперації з Alcatel Telecom (м. Штуттгарт). Було розроблено демонстратор ЦАР для стандартів GSM/DCS-1800 і UMTS, у тому числі унікальний процесор просторово-часової обробки сигналів в реальному часі. Центральна частота робочого діапазону демонстратора ЦАР становить 2,45 ГГц. Антенна решітка виконана у вигляді лінійки з 9 смугових випромінювачів прямокутної форми. Серед особливостей обробки сигналів у SFIR відзначається їх цифрове розквадратурювання, ЦДУ на прийом і передачу сигналів, використання системи цифрової корекції характеристик приймальних каналів у робочій смузі.

Досить оригінальним є проект HALO (High Altitude Long Operations) [17] компаній Mitsubishi Electric і Angel Corporation (США) [18] зі стратосферною базовою станцією мегаполісної радіомережі, розташованої на спеціальному літаку Proteus каліфорнійської фірми Scaled Composites Inc. Крім виконання задач мобільних комунікацій, ця система рекомендується до впровадження й в інтересах персонального зв'язку військового призначення.

В рамках проекту HALO передбачено розміщення ЦАР діаметром близько 6 метрів на літаку (рис. 1.10), що баражує у стратосфері по круговій траєкторії з радіусом 20-30 км на висоті 18-20 км і забезпечує послугами широкосмугового цифрового зв'язку одночасно сотні тисяч наземних користувачів на площі радіусом 120-150 км (рис. 1.11).

Рис. 1.10. Розміщення ЦАР на літаку Proteus проекту HALO.

Рис. 1.11. Зона дії літака Proteus з ЦАР.

Така зона охоплення дозволяє обслуговувати територію великого мегаполіса з прилеглими містами-супутниками. Літак Proteus здатний постійно знаходитися в стратосфері протягом 15 годин з безперебійною роботою бортового джерела електроживлення потужністю 40 кВт. Надалі передбачено перевести Proteus у розряд БПЛА. Для цілодобового функціонування мережі планується використовувати три літаки, що баражують по черзі протягом 8-годинних сеансів. Робочий діапазон частот обраний у смузі 38-40 ГГц. Планується провести дослідження можливостей реалізації ЦАР у діапазоні 2 ГГц для потреб стандарту PCS (Personal Communications Services). Наземні приймачі оснащені невеликими антенами, що автоматично відслідковують положення стратосферного носія в просторі. Пропускна здатність каналів зв'язку в обох напрямках перевищує 25 Мбіт/с. У 1998 р. при відпрацюванні концептуальних засад НАLO в Каліфорнії був продемонстрований стійкий радіообмін з літаком зі швидкістю 51,8 Мбіт/с на дальності 56 км від наземної станції, при цьому загальний обсяг переданої інформації за 8 годин польоту перевищив 1,5 Терабіт.

Розглянуті концепції не охоплюють всіх робіт, що спрямовані на опанування технологією ЦДУ. Велика кількість досліджень свідчить про її важливість, яка обумовлена характером подвійного призначення. Впровадження ЦДУ дозволить отримати значні переваги над традиційними підходами щодо побудови БС СМЗ. Це стосується не тільки підвищення основних показників роботи, а й розширення функціональних можливостей.

Не дивно, що численні переваги ЦАР обумовили ріст їхньої ринкової привабливості. Пройшовши наприкінці 90-х років етап демонстраційних проектів, дана технологія уже вступила в стадію серійного виготовлення антенних систем для систем стільникового зв'язку - діючих і перспективних. Серед піонерів серійного виробництва ЦАР ведучі позиції займають компанії ArrayComm, Metawave Communications, AirNet Communications, Wireless Online (усі - США), а також Ericsson (Швеція).

Пальма першості в освоєнні серійних ЦАР для базових станцій стандарту CDMA належить американської компанії Metawave Communications, що випускає сімейство інтегрованих Smart-антен Spotlight. Перші ЦАР від Metawave Communications - Spotlight 2000 (2100) - працювали тільки в діапазоні несучих 800-900 МГц. Однак системи Spotlight 2200 підтримують ще і смугу 1800-1900 МГц. Апаратура систем Spotlight базується на використанні програмованих логічних інтегральних схемах (ПЛІС), що зайвий раз говорить про перевагу застосування ПЛІС у порівнянні з DSP при рішенні задач ЦДУ.

Рис. 1.12. Антенна система компанії Metawave.

Типова Smart-антена базової станції від Metawave складається з 12-елементного масиву випромінювачів, звичайно встановлюваних по 3-секторної схемі (рис. 1.12). Кожні секторні ґрати сформовані з чотирьох антенних елементів (рис. 1.13), приклад характеристик яких представлений на рис. 1.14. Ширина ДС кожного антенного елемента на рівні -3 дБ складає близько 300. Завдяки ЦДУ сумарна ширина основних (парціальних) променів кожного секторного сегмента ЦАР може приймати значення 180, 120 або 600. Сам сектор випромінювання (прийому) може зміщатися щодо фізичної нормалі на кут +300. Більш того, форма стільники також може змінюватися, здобуваючи 3-, 4- і навіть 6-сегментні обриси (рис. 1.15).

Рис. 1.13. Структура приймально-передавальної антенної решітки (суцільна лінія - режим прийому, пунктирна лінія - режим передачі).

Рис. 1.14. Варіант орієнтації ДС Smart-антени компанії Metawave.

Причому система Spotlight дозволяє в кожнім з 1200-секторів у реальному масштабі часу вирізувати до трьох підсекторов, уражених перешкодами (т.зв. динамічний синтез сектора - DSS). У результаті спрощується частотне планування мережі, а оператор базової станції може раціонально перерозподіляти ресурси в залежності від специфіки навколишнього ландшафту, статистики розподілу запитів за часом доби, дням тижня і при непередбачених обставинах (рис. 1.16, 1.17). Ріст числа секторів прийому з 3 до 6 дозволяє істотно збільшити ємність стільникового осередку (число абонентів, що обслуговуються,). За даними Metawave [10], такий приріст у стандарті cdma2000 на основі Spotlight-рішень може досягати 94%.

Рис. 1.15. Багатосекторна конфігурація ДС.

Рис. 1.16. Посекторна адаптація до навантаження за допомогою Smart-антени.

Рис. 1.17. Динамічний синтез секторів в залежності від часу доби.

Одна з останніх розробок Metawave - антенний комплекс Spotlight 2230 - являє собою апаратуру ЦАР, що інтегрується до складу базової станції CDMA 1 EX разом з устаткуванням Lucent Flexent Modular Cell Base Station фірми Lucent Technologies [10] (рис. 1.18, 1.19). Компанія Lucent поставляє ультралінійні підсилювачі потужності для передавального сегмента і малошумлячі підсилювальні модулі для багатоканального приймача.

Рис. 1.18. Комплект апаратури базової станції CDMA 1EX з обладнанням SpotLight 2230.

Специфіка цифрового устаткування ЦАР дозволяє “м'яко” інтегрувати її в базову станцію будь-якого стандарту з мінімумом стикувальних робіт. При цьому вартість устаткування складе порядку 10% від вартості апаратури типової базової станції CDMA, розрахованої на обслуговування 48-72 одночасних викликів [10]. З огляду на, те що застосування ЦАР істотно підвищує ємність мережі, загальна економія засобів за рахунок відмовлення від додаткових базових станцій буде дуже значною. Відповідно до даних на сайті фірми Metawave, до жовтня 2002 р. в усьому світі було розгорнуто 420 систем Spotlight, у тому числі й у Санкт-Петербурзі (Росія).

Рис. 1.19. Структурна схема обладнання базової Станції CDMA 1EX.

Компанія AirNet Communications [19] з офісом у містечку Мельбурн (шт. Флорида, США), на відміну від Metawave Communications, зосередила зусилля на розробці Smart-антен для модернізації базових станцій стандарту GSM (900, 1800, 1900 МГц) з підтримкою його розширень GPRS і EDGE. Згодом буде можлива і робота з базовими станціями 36-стандарту WCDMA. В активі AirNet 69 діючих патентів, які компанія отримала з моменту появи на ринку телекомунікацій у 1994 р. Технологія ЦДУ використовується в базовій станції AdaptaCell Super Capacity (дослівно - супер'ємна адаптивна стільника). Спираючи на рекламні матеріали, нескладно припустити, що базова станція компанії AirNet обслуговує 8-елементну ЦАР, що працює в секторі 120°. Отже, повноцінна 3-секторна ЦАР буде містити 24 елемента. Примітно, що AdaptaCell Super Capacity забезпечує цифрову обробку сигналів у всій смузі сигналів GSM і сумісна з технологією “інтелектуальної стільники” IntelliCell [19], що просувається компанією ArrayCom (м. Хосе, шт. Каліфорнія) (рис. 1.20).

Рис. 1.20. “Інтелектуальна” стільника.

ArrayCom разом з Metawave Communications, як відзначалося, є піонерами в розробці Smart-антен для радіозв'язку. Однак на відміну від Metawave, ArrayCom споконвічно орієнтувалася на ринок 2.5 G і 3 G систем стільникового зв'язку, що підтримують стандарт WCDMA. Не дивно, що незабаром інтереси AirNet і ArrayCom перетнулися, і тепер вони найчастіше змушені поєднувати зусилля, у ряді випадків прибігаючи до спільного постачання устаткування.

Відповідно до заяв розробників ArrayCom, БС IntellCell при використанні технології ЦДУ дозволяє майже вдвічі скоротити необхідне для покриття зони обслуговування число БС, на чверть знизити витрати при розгортанні знову створюваної мережної інфраструктури і вдвічі зменшити час на інсталяційні роботи. Якщо вірити рекламним матеріалам, компанія ArrayCom уже поставила в усьому світі близько 60 тисяч БС.

Як стверджують розробники, строк окупаємості витрат на впровадження Smart-антен складає рік й менш. При цьому варто врахувати, що технологія ЦДУ перебуває лише на початку свого становлення. В міру її вдосконалювання можуть бути досягнуті ще більш значні результати по збільшенню канальної ємності і розмірів зони, що покривається - наприклад, шляхом збільшення числа антенних елементів в одному секторі ЦАР (до 16 і більш - в азимутальній площині і до 4-8 - у вертикальній).

Темпи розвитку використовуваної в ЦАР елементної бази дозволяють припустити, що вже в найближчому десятилітті почнеться масове відновлення інфраструктури стільникового зв'язку на основі Smart-антен. Причому наявний науковий заділ і досвід розробки подібного роду систем у сполученні з необхідною технологічною базою дозволяють розгорнути і вітчизняне виробництво базових станцій з ЦАР, спираючи на закордонні комплектуючі й унікальний інтелектуальний потенціал розробників нашої країни.

Висновки

1. Придушення внутрішньо-системних завад у СМЗ завжди є досить вагомою проблемою. При наявності двох різних СМЗ частотні канали обох стільник 2 систем повинні бути скоординовані по частотних діапазонах. Для придушення внутрішньо-канальної завади пропонується використання спрямованих антен на БС і нахил ДС антенної системи. Зазначені підходи можливо реалізувати при використанні технології ЦДУ на базі ЦАР.

2. Впровадження технології ЦДУ дозволяє істотно поліпшити пропускну спроможність каналів зв'язку та досягти високого рівня завадозахищеності телекомунікаційних магістралей, стійкого їх функціонування в умовах багатопроменевого поширення радіохвиль та наявності активних завад штучного походження.

3. Численні переваги ЦАР обумовили ріст їхньої ринкової привабливості. При цьому дана технологія вже вступила в стадію серійного виготовлення антенних систем для систем мобільного зв'язку.

4. Темпи розвитку елементної бази для побудови ЦАР дозволяють припустити, що вже в найближчий час почнеться масове відновлення інфраструктури стільникового зв'язку на основі Smart-антен. Причому наявний науковий заділ і досвід розробки подібного роду систем у сполученні з необхідною технологічною базою дозволяють розгорнути і вітчизняне виробництво БС з ЦАР, спираючи на закордонні комплектуючі й унікальний інтелектуальний потенціал розробників нашої країни.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.