Рефераты. Виброизмерительные преобразователи

Виброизмерительные преобразователи

Министерство образования и науки Украины

Запорожский национальный технический университет

Кафедра КПР

Отчет

по лабораторной работе №1

"ВИБРОИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ"

По дисциплине:

"Методы и способы исследования ЭС"

2003

1. Классификация вибропреобразователей

Источником сигнала измерительной информации о значениях измеряемых параметров вибрации является виброизмерительный преобразователь (вибропреобразователь). Современные вибропреобразователи, в основном, построены на принципах электрических измерений не электрических величин (сигналов), когда механические колебания преобразуются в электрические. Виброизмерительные преобразователи классифицируются по ряду независимых признаков:

* по значению - измерительные преобразователи могут предназначаться для измерения различных параметров вибрации. В зависимости от измеряемого параметра вибрации вибропреобразователи могут называть: акселерометрами - для измерения ускорения и велосиметрами - для измерения скорости.

* по связи (взаимодействию) воспринимающей (чувствительной) части с объектом измерения различают контактные и бесконтактные преобразователи. Применение контактных или бесконтактных преобразователей зависит от размеров и массы вибрирующих изделий. Если размеры и массы изделий соизмеримы или меньше размеров и масс контактных преобразователей, то необходимо применять бесконтактные измерительные преобразователи.

* по принципу измерения относительно системы отсчета измерительные преобразователи могут быть основаны: на определении координат отдельных точек изделия относительно неподвижной системы отсчета, с которой ведутся наблюдения - кинематический принцип: на создании искусственной неподвижной системы отсчета в виде инерционного элемента, соединяемого с вибрирующим изделием через упругий подвес (мягкую пружину) - динамический принцип. При осуществлении динамического принципа измерения параметров вибрации изделия, производимое в условиях установившегося процесса, относительно инерционного элемента будет абсолютным. Преобразователи построенные по динамическому принципу часто называют инерционными.

* по принципу преобразования механических колебаний в другие виды колебаний различают активные и пассивные измерительные преобразователи. В активных измерительных преобразователях выходной сигнал получается за счет входной механической энергии и постоянного источника энергии. К активным преобразователям относятся фотоэлектрические, гамма-квантовые, емкостные и др. В пассивных измерительных преобразователях выходной сигнал получается только за счет входной механической энергии. К пассивным преобразователям относятся: пьезоэлектрические, электретные и др.

* по роду измеряемых компонентов вибрации различают преобразователи для измерения линейных компонентов колебаний (однокомпонентные, двухкомпонентные, трехкомпонентные), а также для измерения угловых компонентов.

* по направлению приложения силы при механических воздействиях различают измерительные преобразователи направленного и ненаправленного действия. В инерционных преобразователях ненаправленного действия упругий подвес обеспечивает сохранение положения и ориентации в абсолютном пространстве. По этому они могут выдавать все шесть компонентов вибрации. В преобразователях направленного действия обеспечивается измерение только одного линейного или углового компонента вибрации.

* по физическому явлению доложенному в основу метода измерения параметров механических колебаний, измерительные преобразователи можно объединить в следующие основные группы: механические, акустические (ультразвуковые), электрические, электромагнитные (радиотехнические), оптические (световые) и радиационные.

2. Основные параметры вибропреобразователей

Основные параметры, характеризующие вибропреобразователи (виброметры) и позволяющие осуществить их сравнение и выбор наиболее приемлемых для измерений являются следующие:

* измеряемый параметр линейной вибрации: перемещение (5), скорость (V), ускорение (а), резкость (г), частота (Г), коэффициент нелинейных искажений (р) и т.д.

* диапазон значений измеряемого параметра вибрации, для которого нормированы допускаемые погрешности. При рассмотрении вибропреобразователя совместно с виброметром минимальное значение измеряемого параметра определяется напряжением шума согласующего усилителя

действительный коэффициент преобразования вибропреобразователя - отношение изменения сигнала на выходе вибропреобразователя к вызывающему его изменению параметра вибрации на входе:

где: АЕ - изменение величины сигнала на выходе;

AV - изменение измеряемого параметра вибрации.

При линейной зависимости между Е и V:

* минимальное изменение измеряемого параметра вибрации, вызывающее соответствующее изменение показаний виброметра, называется порогом чувствительности.

* рабочий диапазон частот гармонических вибраций определяется диапазоном частот, в пределах которого неравномерность амплитудно-частотной характеристики по отношению к базовой частоте 1000 Гц не превышает установленного значения.

* основная погрешность вибропреобразователя (виброметра) определяется:

а) при постоянном значении величины измеряемого параметра вибрации в пределах измерения рабочего диапазона частот (неравномерность амплитудно-частотной характеристики);

б) при различных значениях величины измеряемого параметра на неизменной частоте в пределах установленного диапазона измерений (нелинейность амплитудной характеристики).

* коэффициент поперечного преобразования вибропреобразователя отношение изменения сигнала на выходе вибропреобразователя, установленного перпендикулярно направлению действующих колебаний, к вызывающему его изменению параметра вибрации на входе;

где АЕ - изменение величины сигнала на выходе;

AV - изменено измеряемого параметра вибрации.

При линейной зависимости между Е и V:

где Е - максимальное значение сигнала при ряде измерений в различных положениях вибропреобразователя.

* относительный коэффициент поперечного преобразования вибропреобразователя - отношение коэффициента поперечного преобразования к коэффициенту преобразования:

* возможность использования вибропреобразователя при температурных, влажностных и других климатических воздействиях.

* независимость измерения от внешних электрических и магнитных полей.

* возможность использования вибропреобразователя для измерений в эксплуатационных, лабораторных и производственных условиях, а также для метрологических целей.

3. Основные критерии оценки бесконтактных вибропреобразователей

Для сравнения бесконтактных методов измерения параметров вибрации и основанных на них виброизмерительных преобразователей целесообразно пользоваться, помимо перечисленных параметров, следующими критериями оценки: характер физических полей или излучений, взаимодействующих в процессе измерений; величина зазора между вибрирующим изделием и чувствительным элементом вибропреобразователя, а в ряде случаев и источником (излучателем) колебательной энергии; погрешность установки зазора; разрешающая способность метода измерений; критичность к качеству механической развязки вибратора и вибрирующего изделия с источником (излучателем) колебательной энергии или чувствительным элементом вибропреобразователя.

Характер взаимодействия используемых физических полей колебательной энергии (механических или электрических волновых явлений) с поверхностью материала изделия существенно зависит от условий их распространения. При этом, в случае использования энергий электрического или магнитного полей (радиотехнического диапазона частот) необходимо учитывать электрические и магнитные свойства изделия.

Зависимость возможности реализации ряда бесконтактных методов измерений параметров вибрации от характера взаимодействия используемой для измерений колебательной энергии с материалом изделия приводит в ряде случаев к необходимости искусственного придания поверхности изделия определенных свойств (создание зеркального отражения, обеспечения электропроводимости и т.д.). Если при этом происходит заметное изменение габаритов и масс испытываемых изделий, то данный метод нельзя рассматривать как бесконтактный.

Величина зазора между вибрирующим изделием и чувствительным элементом вибропреобразователя или источником (излучателем) колебательной энергии для ряда методов является весьма критичной, поскольку от нее зависит максимальная величина измеряемой амплитуды перемещения, а также порог чувствительности вибропреобразователя. Для некоторых методов погрешность измерений зависит не только от величины зазора, но и от соотношения величины максимальной амплитуды перемещения (Sa max) и величины зазора So. Причем в ряде случаев имеются определенные требования к величине данного соотношения (Sa max/So). Например, для бесконтактного электретного вибропреобразователя Sa max/So < 0,1. Порог чувствительности для ряда методов определяется максимальной величиной зазора, при которой сигнал на выходе вибропреобразователя оказывается соизмеримым с уровнем шумов или минимальное изменение измеряемого параметра вибрации вызывает изменение показаний виброметра, соизмеримое или меньше числа отсчета измеряемой величины. Зависимость точностных характеристик некоторых методов измерений от предельных значений зазора, а ряде случаев от точности его установки, приводит к необходимости введения в рассмотрение параметра - погрешность установки зазора.

Разрешающая способность метода измерений характеризует его способность обеспечивать раздельное наблюдение и измерение параметров вибрации близко расположенный друг к другу элементов конструкций или изделий. При измерении линейной вибрации следует пользоваться разрешающей способностью в плоскости и разрешающей способностью по зазору, т.е. по расстоянию от источника (излучателя) колебательной энергии до вибрирующего элемента конструкции или изделия.

Разрешающей способностью в плоскости называется минимальное расстояние между элементами конструкции или изделия, расположенными в одной плоскости, при котором возможно раздельное измерение их параметров вибрации.

Разрешающей способностью по зазору называется минимальная разность зазоров между элементами конструкции или изделиями и вибропреобразователем или источником (излучателем) колебательной энергии, при котором возможно раздельное измерение их параметров вибрации. При измерении угловой вибрации следует пользоваться разрешающей способностью по зазорам и разрешающей способностью по угловым координатам.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.