Рисунок 3 - Частотний спектр сигналу, показаного на рис. 2
На верхньому графіку рис. 3 зображений частотний спектр сигналу, показаного на рис. 2. На нижньому графіку зображена його збільшена копія - діапазон частот, який цікавить нас. Зазначте, що чотири частотні компоненти відповідають частотам 10, 25, 50 та 100 Гц.
Розглянемо ще один приклад. На рис. 4 показаний сигнал, що складається з чотирьох різних частот, що зустрічаються на чотирьох різних інтервалах й, отже, є нестаціонарним. В інтервалі часу від 0 до 300 мс частота сигналу 100Гц, від 300 до 600 мс - 50Гц, від 600 до 800 мс - 25Гц і на останньому інтервалі - 10Гц.
Рисунок 4 - Сигнал, що складається з чотирьох різних частот
Рисунок 5 - Спектр (ПФ) сигналу, зображеного на рис. 4
Як видно з рисунка, всі чотири частотні компоненти чітко зображені. Відмітьте, що амплітуди високочастотних компонентів більші, ніж низькочастотних. Це пов'язане з тим, що їхня тривалість більша. ПФ має чотири піки, які відповідають чотирьом частотам, що присутні у сигналі.
Для першого сигналу, показаного на рис. 2, розглянемо таке питання: у який момент часу (або хоча б інтервал) виникла та або інша частота? Вони існують протягом усього часу. Нагадаємо, що в стаціонарних сигналах всі частотні компоненти присутні протягом усього часу. Тобто 10, 50, 100Гц присутні на всьому часовому інтервалі.
Тепер розглянемо те саме питання для нестаціонарного сигналу, показаного на рис. 4. У який час існують різні частоти? Зрозуміло, що не постійно. Однак, порівнявши спектри рис. 7 і рис. 9, ми не виявимо особливої різниці. На обох графіках видно чотири частотні складові 10, 25, 50 та 100Гц. Крім неоднаковості амплітуд піків, інших розбіжностей між спектрами немає, хоча вони відповідають різним сигналам у часовій області. Яким чином спектри двох настільки різних сигналів виявилися схожі? Існує така властивість ПФ, яка дозволяє побачити частотне наповнення сигналів, але не дозволяє визначити, в який момент часу існує та або інша частота. Тому ПФ непридатне для аналізу нестаціонарних сигналів, за одним винятком: ПФ може використовуватися для аналізу нестаціонарних сигналів, якщо нас цікавить лише частотна інформація, а час існування спектральних складових неважливий. У протилежному випадку треба шукати більш підходящий метод аналізу.
Якщо потрібна часова локалізація спектральних компонентів, необхідно звернутися до частотно-часового подання сигналу.
Рисунок 8 - Чотири вікна різної ширини
Рисунок 9 - ВПФ при вузькому значенні ширини вікна
Для початку використаємо перше, найвужче вікно. Ми можемо очікувати добре розрізнювання за часом, але погане за частотою (рис. 9). Зазначимо, що чотири піки, показані на рисунку, добре розділені за часом. Також зазначимо, що в частотній області кожен пік накриває діапазон частот, а не одну якусь частоту. Тепер збільшимо ширину вікна й подивимося на наступний рисунок 10.
Рисунок 10 - ВПФ при збільшеному широкому значенні ширини вікна
Як видно з рисунка, піки тепер не настільки добре розділені за часом.
Однак частотне розрізнювання покращилось. Збільшимо ще ширину вікна (рис. 11):
Рисунок 11 - ВПФ при широкому значенні ширини вікна
Як і очікувалося, часове розрізнювання значно погіршилося.
Наведені приклади показали проблему розрізнювання, властиву ВПФ. Тому при застосуванні ВПФ завжди виникають питання: який вид вікна використати? Вузьке вікно забезпечує краще часове розрізнювання, а широке - краще частотне. Проблема полягає в тому, що доводиться вибирати вікно «раз і назавжди», тобто для аналізу всього сигналу, тоді як різні його відрізки можуть вимагати застосування різних вікон. Якщо сигнал складається з далеко віддалених один від одного частотних компонентів, то можна пожертвувати спектральним розрізнюванням на користь часового й навпаки.
Вейвлет-перетворення вирішує якоюсь мірою цю проблему розрізнювання.