Рефераты. Усилитель мощности 1-5 каналов ТВ

Выбор транзистора осуществляется с учётом следующих предельных параметров[2]:

1. граничной частоты усиления транзистора по току в схеме с ОЭ

;

2. предельно допустимого напряжения коллектор-эмиттер

;

3. предельно допустимого тока коллектора

;

4. предельной мощности, рассеиваемой на коллекторе

.

Этим требованиям полностью соответствует транзистор КТ930Б. Его основные технические характеристики взяты из справочника [3] и приведены ниже.

Электрические параметры:

1. Граничная частота коэффициента передачи тока в схеме с ОЭ МГц;

2. Постоянная времени цепи обратной связи при В пс;

3. Статический коэффициент передачи тока в схеме с ОЭ ;

4. Ёмкость коллекторного перехода при В пФ;

5. Индуктивность вывода базы нГн;

6. Индуктивность вывода эмиттера нГн.

Предельные эксплуатационные данные:

1. Постоянное напряжение коллектор-эмиттер В;

2. Постоянный ток коллектора А;

3. Постоянная рассеиваемая мощность коллектора Вт;

3.3.3 Расчёт эквивалентной схемы транзистора

Существует много разных моделей транзистора. В данной работе произведён расчёт моделей: схемы Джиаколетто и однонаправленной модели на ВЧ.

А) Расчёт схемы Джиакалетто:

Схема Джиакалетто представлена на рисунке 3.3.5.

Рисунок 3.3.5 Схема Джиакалетто.

Найдем при помощи постоянной времени цепи обратной связи сопротивление базового перехода по формуле:

(3.3.9)

При чём и доложны быть измерены при одном напряжении Uкэ. А так как справочные данные приведены при разных напряжениях, необходимо воспользоваться формулой, которая позволяет вычислить при любом значении напряжения Uкэ:

, (3.3.10)

в нашем случае:

Подставим полученное значение в формулу (3.3.9):

, тогда

Используя формулу (3.3.10), найдем значение коллекторной емкости в рабочей точке :

Найдем значения остальных элементов схемы:

, (3.3.11)

где

(3.3.12)

- сопротивление эмиттеного перехода транзистора. Тогда:

Емкость эмиттерного перехода:

Выходное сопротивление транзистора:

(3.3.13)

(3.3.14)

(3.3.15)

Б) Расчёт однонаправленной модели на ВЧ:

Схема однонаправленной модели на ВЧ представлена на рисунке 3.3.6. Описание этой модели можно найти в журнале [4].

Рисунок 3.3.6 Схема однонаправленной модели на ВЧ

Параметры эквивалентной схемы рассчитываются по приведённым ниже формулам.

Входная индуктивность:

, (3.3.16)

где -индуктивности выводов базы и эмиттера, которые берутся из справочных данных.

Входное сопротивление:

, (3.3.17)

Выходное сопротивление имеет такое же значение, как и в схеме Джиакалетто:

.

Выходная ёмкость- это значение ёмкости вычисленное в рабочей точке:

.

3.3.4 Расчёт цепей термостабилизации

При расчёте цепей термостабилизации нужно для начала выбрать вариант схемы. Существует несколько вариантов схем термостабилизации: пассивная коллекторная, активная коллекторная и эмиттерная. Их использование зависит от мощности каскада и от того, насколько жёсткие требования к термостабильности. В данной работе рассмотрены две схемы: эмиттерная и активная коллекторная стабилизации.

3.3.4.1 Эмиттерная термостабилизация

Эмиттерная стабилизация применяется в основном в маломощных каскадах, и получила наиболее широкое распространение. Схема эмиттерной термостабилизации приведена на рисунке 3.3.7. Произведём упрощённый расчёт этой схемы [2].

Рисунок 3.3.7 Принципиальная схема эмитерной термостабилизации

Расчёт производится по следующей схеме:

1.Выбираются напряжение эмиттера и ток делителя (см. рис. 3.4), а также напряжение питания ;

2. Затем рассчитываются .

Напряжение эмиттера выбирается равным порядка . Ток делителя выбирается равным , где - базовый ток транзистора и вычисляется по формуле:

(мА); (3.3.18)

Тогда:

А (3.3.19)

Учитывая то, что в коллекторной цепи отсутствует резистор, то напряжение питания рассчитывается по формуле: (В) ; (3.3.20)

Расчёт величин резисторов производится по следующим формулам:

Ом; (3.3.21)

(Ом); (3.3.22)

(Ом); (3.3.23)

Данная методика расчёта не учитывает напрямую заданный диапазон температур окружающей среды, однако, в диапазоне температур от 0 до 50 градусов для расчитанной подобным образом схемы, результирующий уход тока покоя транзистора, как правило, не превышает (10-15)%, то есть схема имеет вполне приемлимую стабилизацию [2].

3.3.4.2 Активная коллекторная термостабилизация

Активная коллекторная термостабилизация используется в мощных каскадах и является достаточно эффективной, её схема представлена на рисунке 3.3.

Рисунок 3.3.8 Схема активной коллекторной термостабилизации.

В качестве VT1 возьмём КТ814А. Выбираем падение напряжения на резисторе из условия (пусть В), тогда . Затем производим расчёт по формулам [6]:

; (3.3.24)

; (3.3.25)

; (3.3.26)

; (3.3.27)

, (3.3.28)

где - статический коэффициент передачи тока в схеме с ОБ транзистора КТ814;

; (3.3.29)

; (3.3.30)

. (3.3.31)

Получаем следующие значения:

(Ом);

(мА);

(В);

(А);

(А);

(Ом);

(кОм);

(Ом)

Величина индуктивности дросселя выбирается таким образом, чтобы переменная составляющая тока не заземлялась через источник питания, а величина блокировочной ёмкости - таким образом, чтобы коллектор транзистора VT1 по переменному току был заземлён.

Как было сказано выше, эмиттерную термостабилизацию в мощных каскадах применять “невыгодно” так как на резисторе, включённом в цепь эмиттера, расходуется большая мощность, поэтому в нашем случае необходимо выбрать активную коллекторную стабилизацию.

3.3.5 Расчёт корректирующих цепей

3.3.5.1 Расчёт выходной корректирующей цепи

Расчёт всех КЦ производится в соответствии с методикой описанной в [5]. Схема выходной корректирующей цепи представлена на рисунке 3.3.9.

Рисунок 3.3.9 Схема выходной корректирующей цепи

Найдём - выходное сопротивление транзистора нормированное относительно и :

(3.3.32)

.

Теперь, по таблице приведённой в [4], найдём ближайшее к рассчитанному значение и выберем соответствующие ему нормированные величины элементов КЦ: и , а также -коэффициент, определяющий величину ощущаемого сопротивления нагрузки и модуль коэффициента отражения .

Найдём истинные значения элементов по формулам:

; (3.3.33)

; (3.3.4)

. (3.3.35)

(нГн);

(пФ);

3.3.5.2 Расчёт межкаскадной КЦ

В данном усилителе имеются две МКЦ: между выходным и предоконечным каскадами и между предоконечным и входным каскадами. Это корректирующие цепи третьеого порядка. Цепь такого вида обеспечивает реализацию усилительного каскада с равномерной АЧХ и частотными искажениями лежащих в пределах допустимых отклонений [5].

Расчёт межкаскадной корректирующей цепи, находящейся между выходным и предоконечными каскадами:

Принципиальная схема МКЦ представлена на рисунке 3.3.10

Рисунок 3.3.10. Межкаскадная корректирующая цепь третьего порядка

При расчёте используются однонаправленные модели на ВЧ выходного и предоконечного транзисторов. Возникает задача: выбор предоконечного транзистора. Обычно его выбирают ориентировочно, и если полученные результаты будут удовлетворять его оставляют.

Для нашего случая возьмём транзистор КТ930А, который имеет следующие эквивалентные параметры [3]:

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.