Рис. 3.22 Рис. 3.23
Для заданного диапазона частот имеем: = 6,15108; = 1,23; Нормированные относительно и значения элементов равны: 7,0610-4; 7,3810-3; 0,46. Используя табличные значения , для = 1,3, в соответствии с (3.3) из (3.25) получим: =5,410-4. Ближайшее табличное значение = 510-4, для которого: 0,2626; 4,216; 69,26; 0,01325. По соотношениям (3.26) определим: 0,2626; 3,756; 54,56; 0,0093. Осуществляя денормирование элементов КЦ, имеем: 32 нГн; 81,4 пФ; 1183 пФ; 1,1 нГн. По соотношению (3.27) найдем коэффициент усиления каскада: 7,33.
На рис. 3.23 приведена АЧХ спроектированного однокаскадного усилителя, вычисленная с использованием полной эквивалентной схемы замещения транзистора [13] (кривая 1). Здесь же представлена экспериментальная характеристика усилителя (кривая 2).
3.3.3. Параметрический синтез полосовых усилительных каскадов с корректирующей цепью, выполненной в виде фильтра нижних частот
Описание схемы КЦ, приведенной на рис. 3.17, ее применение в полосовых усилителях мощности, а также методика настройки даны в [19, 20, 25, 57]. Известные методы расчета указанной КЦ [20, 25, 57] не учитывают частотную зависимость коэффициента усиления транзистора в пределах рабочего диапазона, что является причиной значительных искажений формы АЧХ разрабатываемых усилителей.
Рис. 3.24
Коэффициент прямой передачи последовательного соединения КЦ и транзистора может быть описан в символьном виде дробно-рациональной функцией комплексного переменного:
, (3.31)
где ;
- нормированная частота;
- текущая круговая частота;
- центральная круговая частота полосового усилителя;
;
- коэффициент усиления транзистора по мощности в режиме двухстороннего согласования на частоте =1;
(3.32)
- нормированные относительно и значения элементов ;
- активная и емкостная составляющие выходного сопротивления транзистора ;
- активная и индуктивная составляющие входного сопротивления транзистора .
Из (3.31) следует, что коэффициент усиления на частоте =1 равен:
. (3.33)
В качестве прототипа характеристики (3.31) выберем функцию:
. (3.34)
Квадрат модуля функции-прототипа (3.34) имеет вид:
. (3.35)
Для выражения (3.35) составим систему линейных неравенств (3.5):
(3.36)
Решая (3.36) для различных и при условии максимизации функции цели: , найдем коэффициенты , соответствующие различным полосам пропускания полосового усилительного каскада. Вычисляя полиномы Гурвица знаменателя функции (3.35), определим коэффициенты функции-прототипа (3.34).
Значения коэффициентов функции-прототипа для различных полос пропускания и неравномерности АЧХ ±0,25 дБ приведены в таблице 3.7. Здесь же представлены результаты вычислений нормированных значений элементов , полученные из решения системы неравенств (3.3) и соответствующие различным значениям .
Анализ полученных результатов позволяет установить следующее. Для заданной относительной полосы пропускания, определяемой отношением , где - верхняя и нижняя граничные частоты полосового усилителя, существует определенное значение , при превышении которого реализация каскада с требуемой формой АЧХ становится невозможной. При допустимой неравномерности АЧХ, равной 0,25 дБ, ее аппроксимация функцией (2.34) возможна при условии . При допустимой неравномерности АЧХ более 0,25 дБ, область аппроксимации увеличивается незначительно. Поэтому создание усилителя с полосой пропускания более одной октавы с использованием изображенной на рис. 3.17 КЦ невозможно.
Рассматриваемая КЦ (рис. 3.17) может быть использована и в качестве входной КЦ усилителя. В этом случае при расчетах следует полагать , .
=0.98884
0.0
3.677
0.2698
74.36
0.0134
=0.96466
2.615
0.3741
28.65
0.0344
=0.93726
1.931
0.4960
13.50
0.0724
=0.81594
1.426
0.6176
6.970
0.1329
=0.69360
1.196
0.6711
4.991
0.1731
=0.58961
1.071
0.6833
4.291
0.1876
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10