Рефераты. Автоматизированная система защиты и контроля доступа в помещения
ВЫВОДЫ:

При данном объёме выпуска изделия (2000 шт./год) мы уже в первом году получим прибыль, при условии продажи всей партии. Конкурентноспособность изделия обеспечивается широкими функциональными возможностями и более низкой ценой, по сравнению с аналогами.

Экономический эффект от внедрения и изготовления проектируемого изделия составит: (1999г.) 883,569млн. руб.

8.Охрана труда и экологическая безопасность

Оценка электробезопасности:

В проектируемой системе с точки зрения экологической безопасности одним из самых опасных факторов влияющих на жизнедеятельность человека, является опасность поражения электрическим током.

Оценка опасности поражения заключается в расчёте протекающего тока через человека или напряжения прикосновения UПР и сравнения этих величин с предельно допустимыми в зависимости от продолжительности воздействия тока. Эта оценка проводится как в нормальном режиме работы электроустановки, так и в аварийном. Оценка опасности электропоражения позволяет определить необходимость применения способов и средств защиты, а фактические и предельно допустимые значения UПР и IК служат исходными данными для их проектирования и расчёта.

Ввиду того, что проектируемая система может иметь различную конфигурацию по количеству контролируемых пунктов, месту их размещения и расстояния между ними и центральным пультом управления, будем исходить из следующего. СЗКДП пусть будет иметь пять контролируемых пунктов и один центральный пульт управления, расположенные в одну линию, (рис.8.1).

Контролируемый пункт представляет собой систему шлюза с двумя сдвижными дверями которые управляются электродвигателем питающимся от однофазной сети. Электродвигателем управляет микропроцесорное устройство. Работу контроллируемых пунктов (КП) контролирует центральный пульт управления (ЦПУ) выполненный на базе IBM PC совместимого компьютера. Каждый КП и ЦПУ запитываются от однофазной сети переменного тока. Расстояние между контролируемыми пунктами выбирается равным 10 метрам.

Исходя из выше сказанного ясно, как важно оценить потенциальную опасность электропоражения. В системе предполагается использовать заземляющие устройства на базе искусственных и естественных заземлителей, о чем будет описано ниже. Но прежде производится расчет возможных токов поражения. Фактические значения напряженияприкосновения Uпр и протекающего тока через человека Iк могут быть определены расчетным путем или эксперементально.

При расчете Iк необходимо знать сопротивление в цепи человека Rск, которое включает в себя сумму сопртивлений тела человека Rк, обуви Rоб и основания Rос, на котором стоит человек, то есть

Rск = Rк + Rоб + Rос (8.1)

Сопротивление тела человека Rк принимается равным 1кОм. Сопротивление обуви принимается равным 1,5кОм [ ].

Электрическое сопротивление основания Rос зависит от материала и степени влажности пола. Так как очень часто в качестве материала для пола используется бетон, будем сопротивление считать для бетона, считая, что пол мокрый (худший случай). Тогда из таблицы [ ] ,берем:

Rос=0,1кОм

Следовательно сопротивление в цепи человека

Rск=1+1,5+0,1=2,6кОм

Расчитаем Iк для случая с заземленным проводом (прикосновение к незаземленному проводу)

Iк=U/(Rск+r0) , (8.2)

где U -- напряжение сети, равное 220В;

г0 -- сопротивление заземления провода, равное 10 Ом.

Тогда

Iк=220/(2600+10)=0,0843А

Теперь рассчитаем Iк для случая с заземленным проводом (прикосновение к заземленному проводу). При прикосновении к заземленному проводу человек оказывается под воздействием напряжения Uпр, равного потере напряжения в заземленном проводе на участке от места его заземления а до места касания в:

Uпр= Iнг* rав (8.3)

где Iнг -- ток нагрузки;

rав ---- сопротивление провода на участке ав.

В нормальных условиях Uпр невелико. Наибольшее его значение соответствует прикосновению человека к точке в непосредственной близости с нагрузкой и составляет не более 5% напряжения сети. То есть

Uпр=220*0,05=11В (худший случай),

тогда

Iк=Uпр/Rск=11/2600=0,0042А

При коротком замыкании между проводами ток резко возрастает и потеря напряжения в проводах достигает почти 100%U. Напряжение прикосновения возрастает практически пропорционально увеличению тока в проводе и при коротких замыканиях может достигать опасных для человека значений, особенно вблизи нагрузки, тогда

Iк=220/2600=0,085А

Подведя итоги можно сделать вывод, что наиболее опасный случай для человека возникает при прикосновении к проводу при коротком замыкании, когда ток равен 85мА. Неопасным для человека является ток равный 4,2мА [ ] при прикосновении к заземленному проводу при нормальном режиме работы.

При выборе средств защиты работающих от электропоражения необходимо учитывать особенности производства и условия эксплуатации оборудования, потребляющего электрическую энергию. Согласно правилам и условиям электробезопасности для обеспечения электробезопасности объекта в случае повреждения изоляции следует применять, по крайней мере, один из следующих способов защиты: защитное заземление, зануление, защитное отключение, разделительный трансформатор и другие.

В проектируемой системе в качестве основного способа защиты выбираем защитное заземление. Оно применяется в электроустановках, питающихся изолированными от земли выводами источника однофазного тока, что применительно к нашему случаю.

В системе предусматривается автономная шина заземления технических средств для подключения корпусрв устройств, экранов кабелей и подключения логических нулей цепей элементов схем. Основным требованием к автономному заземлению является то, чтобы сопротивление заземляющего устройства между клемой земли контролируемых пунктов, центрального пульта управления и землей (грунтом) не превышало 4 Ом в любое время года [ ].

Расчет заземлителей в проектируемой системе с напряжением до 1кВ выполняют методом коэффицента использования по допустимому сопротивлению заземлителя растеканию тока.

Вначале определим допустимое сопротивление заземляющего устройства Rз.доп. Согласно ПУЭ значение Rз.доп устанавливается в зависимости от напряжения сети и суммарной мощности трансформаторов, питающих эту сеть, а именно: при напряжении до 1000В и мощности менее 1000 кВ*А допустимое заземляющее сопротивление Rз.доп=4Ом. Возможно на территории где будет эксплуатироваться СЗКДП будут присутствовать естественные заземлители, которые можно использовать. Поэтому общее сопротивление заземляющего устройства Rз.у будет складываться из сопротивления естественных и искусственных заземлителей, т.е.

1/ Rз.у=1/Rест + 1/Rиск < Rз.доп (8.4)

Так как требуемое значение Rз.доп может быть обеспечено только естественнымизаземлителями, то сначала необходимо выполнить расчет сопротивления естественных заземлителей и полученный результат сравнить с требуемым значением Rз.доп.В виду того, что отсутствуют исходные данные для расчета сопротивления естественных заземлителей, произведем расчет искусственных заземлителей.

Для заземления стационарных установок наибольшее распространение получили групповые искусственные заземлители, размещенные в грунте на определенной глубине. Они представляют собой систему вертикальных электродов, параллельно соединенных горизонтальным проводником связи. Расстояние (Q) между соседними вертикальными электродами рекомендуется выбирать не менее 2,5 м. Для заземлителей, расположенных в ряд отношение Q к длине (L) вертикального электрода предпочтительно выбирать равным около 2, а при расположении электродов по контуру -- равным 3.

В начале определим сопротивление одиночного вертикального электрода. Предполагается использовать заземлитель стержневой круглого сечения или уголковый у поверхности земли (рис.8.2).

Rв=р/(6,28*L)*ln(4*L/d) (8.5)

где Rв - сопротивление одиночного заземлителя;

p - удельное сопротивление земли;

L - длина стержня;

d - ширина стержня.

Удельное сопротивление земли (p) определяется эксперементально и зависит от типа грунта. Из таблицы [ ] выбираем наиболее распространенный вид грунта -- почва. Рекомендуемое значение p для почвы равно 200 Ом*м. С учетом коэффицента сезонности (y) из таблицы определим рассчетное сопротивление грунта,

pp=p*y (8.6)

Коэффицент сезонности y исходя из таблицы для вертикального электрода длиной 3 метра равен 1,5. Тогда

pp=200*1,5=300 Ом*м

Ширину заземлителя (d) выберем равной 0,05 метров. Теперь найдем сопротивление одиночного заземлителя,

Rв=300/(6,28*2)*ln(4*2/0,1)=20 Ом

Далее определим ориентировочное количество вертикальных электродов (n) с некоторым избытком. Для этого находят произведение коэффицента использования вертикальных электродов (nв) на их количество (n) по формуле

n*nв=Rв/Rз (8.7)

n*nв=20/4=5

Для нахождения числа электродов используем таблицу [ ].

Из таблицы видно, что при размещении в ряд получим:

nв=0,77 ; n=6

Далее, зная ориентировочное количество электродов, с учетом их размещения в грунте, найдем длину горизонтального проводника связи при расположении в ряд,

l=1,05*(n- 1)*a=1,05*(6-1)*10=52,5 м.

Рассчитаем сопротивление растекания тока горизонтального проводника связи (в виде стальной полосы шириной (b)), соединяющего верхние концы вертикальных электродов из выражения,

Rr=рр/(6,28*L)*ln(2*l2/b) , Ом (8.8)

Тогда

Rr=300/(6,28*3)*ln(2*52,52/0,05)=84 Ом.

Результирующее сопротивление искусственного группового заземлителя будет равно,

Rи=Rв*Rr/ (Rв*nг+Rr*nв*n), Ом (8.9)

Тогда

Rи=20*84/(20*0,84+84*0,77*6)=4,14 Ом

При использовании естественного заземлителя параллельно с искусственным даст нужный результат и сопротивление заземляющих проводников не превысит требуемого значения.

Итак: проектируемый заземлитель состоит из 6 вертикальных стержневых электродов длиной по 2 метра и диаметром 10мм и горизонтального электрода в виде стальной полосы длиной 52 метра углубленных в землю (грунт). При таких условиях Rи искусственного заземлителя в самое неблагоприятное время года не превышает 4,14 Ом, при требуемом сопротивлении 4 Ом. Можно сказать, что проектируемый заземлитель соответствует требованиям электробезопасности.

Заключение

В заключении можно отметить, что проектируемая автоматизированная система защиты и контроля доступа в помещения позволяет решить все возникающие вопросы при организации ограниченного доступа на объект подлежащий защите. Она может применятся как в административных зданиях, так и на крупных предприятиях, везде где требуется организация высокого пропускного режима.

Применение таких мощных электронных средств как: электронный идентификатор, микроконтроллер серии 80С51, радиомодем TXM433F, компьютер позволяют создать мощную локальную сеть по обеспечению безопасности людей на контролируемой системой объекте.

Система производит не только идентификацию и аутентификацию пользователей, но и контроль доступа к ресурсам системы. СЗКДП постоянно производит регистрацию и анализ событий происходящих внутри системы, ведет протокол функционирования всего комплекса защиты.

Обеспечение комплексной безопасности на объекте подлежащем защите на основе проектируемой СЗКДП, позволяет создавать препятствия для любого несанкционированного вмешательства в процесс ее функционирования, а также попыток выведения или разрушения ее компонентов. То есть защиту всех компонентов системы оборудования, программного обеспечения, данных и персонала.

Cписок литературы

1. Хвощ С.Т. Организация последовательных мультиплексных каналов систем автоматического управления - Л.:Машиностроение,1989

2. Сташин В.В. Проектирование цифровых устройств на однокристальных микроконтроллерах - М.:Энергоатомиздат,1990

3. Лебедев О.Н. Изделия электронной техники. Цифровые микросхемы. Микросхемы памяти. Микросхемы ЦАП и АЦП: Справочник - М.: Радио и связь, 1994

4. Апорович А.Ф. Проектирование радиотехнических систем: Учебное пособие. - Мн.: Выш. шк., 1988

5. Халсалл Ф. Передача данных, сети компьютеров и взаимосвязь открытых систем: Пер. с англ. - М.: Радио и связь, 1995

6. Бергхаузер Т. Система автоматизированого проектирования AutoCAD: Справочник: Пер с англ. - М.: Радио и связь, 1989

7. Долин П. А. Основы техники безопасности в электроустановках: Учебное пособие для вузов. - М. Энергоатомиздат, 1984

8. Михнюк Т.Ф. Задачи и расчеты по охране труда по курсу “Охрана труда” для студентов радиотехнических и приборостроительных специальностей. В двух частях. Защита от электрического тока. - БГУИР, 1994

9. Каган Б.М. Основы проектирования микропроцессорных устройств автоматики. - М.: Энергоатомиздат, 1987

10. Гольденберг Л.М. Цифровые устройства и микропроцессорные системы: Учебное пособие для вузов. - М.: Радио и связь, 1992

11. Фролкин В.Т. Импульсные и цифровые устройства: Учубное пособие для вузов. - М.: Радио и связь, 1992

12. Ходасевич Р. Г. Методическое пособие по дипломному проектированию. - Минск , 1980.

13. ГалкинВ.И. , Булычев А.Л. , Прохоренко В.А. Полупроводниковые приборы : Справочник - Минск `` Беларусь `` , 1987.

14. Общесоюзные нормы технологического проектирования ОНТП 24-86.

15. ГОСТ 12.2.006-87. ( МЭК 65-85 ) Безопасность аппаратуры электронной сетевой и сходных с ней устройств , предназначенных для бытового и аналогичного общего применения. Общие требования и методы испытаний.

16. ГОСТ 12.2.007.0-75. ССБТ. Радиопомехи индустриальные. Методы испытаний источников индустриальных радиопомех.

17. ГОСТ 2.144-70. ТУ. Правила построения , изложения и оформления.

18. ГОСТ 29037-91. Совместимость технических средств электромагнитная. Сертификационные испытания. Общие положения.

19. ГОСТ 27570.0-87. Безопасность бытовых и аналогичных электроприборов. Общие требования и методы испытаний.

20. Селиванов Н.Р. Электроника в криминалистике.-- Москва, 1979.

21. Touch Memory Standards.-- Dallas Semiconductor Corporation , Dallas, Texas , USA , 1994.

22. Афитов Э.А. Учебное пособие : Организация и планирование производства. - Мн. : МРТИ , 1992.

23. Варламов Р.Г. Справочник конструктора РЭА. - М. : Радио и связь , 1987.

24. Рафикузаман М. Микропроцессоры и машинное проектирование микропроцессорных систем : В 2-х кн. - М. : Мир , 1988.

25. Шевкопляс Б.В. Микропроцессорные структуры. Инженерные решения : Справочник. М. : Радио и связь , 1990.

26. Хоровиц П. , Хилл У. Искусство схемотехники : В 3-х томах. - 4-е изд. перераб. и доп. - М. : Мир , 1993.

27. Кобылинский А.В. , Сабадаш Н.Г. , Тесленко А.К. Система автоматизации программирования однокристальной микроЭВМ. - Микропроцессорные средства и системы, 1986, №3.

28. Кушнир В.Е. , Панфилов Д.И. , Шаронин С.Г. - Учебная микроЭВМ на основе однокристальной ЭВМ КМ1816ВЕ48. - Микропроцессорные средства и системы , 1986 , №6.

29. Р 50-34.119-90. Рекомендации.Информационная технология. Комплекс стандартов на автоматизированные системы. Архитектура локальных вычислительных сетей в системах промышленной автоматизации. Общие положения.

30. ГОСТ 34.602-89. Информационная технология. Техниеское задание на создание автоматизированной системы.

31. РД 50-682-89. Методические указания. Информационная технология. Общие положения.

32. ГОСТ 34.601-90. Информационная технология. Комплекс стандартов на автоматизированные ситемы. Автоматизированные системы.

33. Общеотраслевые руководящие методические материалы по созданию и применению автоматизированных систем управления. (ОРММ-3АСУ ТП). М.: Государственный комитет СССР по науке и технике. 1986

34. ГОСТ 34.003-90.Информационная технология. Комплекс стандартов на автоматизированные ситемы. Автоматизированные системы. Термины и положения.

35. Р 50-34.119-90. Рекомендации.Информационная технология. Комплекс стандартов на автоматизированные системы. Архитектура локальных вычислительных сетей в системах промышленной автоматизации. Общие положения.

36. ГОСТ 26342-84. Средства охранной, пожарной и охраннопожарной-сигнализации. Типы, основные параметры и размеры.

37. 5. ГОСТ 12.2.006-87. (МЭК 65-85). Безопасность аппаратуры

38. электронной сетевой и сходных с ней устройств, предназначенных для бытового и аналогичного общего применения. Общие требования и методы испытаний.

39. 6. ГОСТ 12.2.007.0-75. ССБТ. Радиопомехи индустриальные. Методы испытаний источников индустриальных радиопомех.

40. ГОСТ Р50009-92. Совместимость технических средств охранно-пожарной сигнализации электромагнитная. Нормы и методы испытаний.

41. ГОСТ 4.188-85. СПКП. Средства охранно-пожарной сигнализации. Номенклатура показателей.

42. ГОСТ 2.144-70. ТУ. Правила построения, изложения и оформления.

43. ГОСТ 29037-91. Совместимость технических средств электромагнитная. Сертификационные испытания. Общие положения.

44. 11.ГОСТ 27570.0-87. Безопасность бытовых и аналогичных электроприборов. Общие требования и методы испытаний.

45. ГОСТ 251099-83. Средства пожарной, охранной сигнализацииОбщие технические требования и методы испытаний.

46. ГОСТ 16325-88. Машины вычислительные цифрового общего назначения. Общие технические требования.

47. СНиП 3.05.07-85. Системы автоматизации.

48. ГОСТ 24.602-86. Надежность автоматизированых систем управления. Основные положения.

Приложение 1

СТАНДАРТ I-ETS 300 220

В 1993 году Технический Комитет по Радиооборудованию и Системам европейского Института Телекоммуникационных Стандартов разработал и провел утверждение Временного Европейского Стандарта Телекоммуникаций (Interim European Telecommunication Standard, I-ETS).

Данный стандарт, получивший обозначение I-ETS 300 220, регламентирует технические характеристики и способы их измерения для радиооборудования, работающего в диапазоне частот от 25 до 1000 Мгц со всеми видами модуляции, исключая системы множественного доступа с кодовым разделением, и имеющего мощность до 500 мВт,

На работу приборов класса 1.а стандарт I-ETS 300 220 накладывает следующие ограничения:

- максимальная эффективная излучаемая мощность.........10 мВт

- тип используемой антенны.......................................встроенная

- уровень внеполосных излучений передатчика:

- в диапазонах 47...74 МГц, 87.5...118 МГц, 174...230 МГц, 470...862 МГц..........................................................4 нВт

- в других диапазонах до 1000 МГц..............................250 нВт

- на частотах свыше 1000 МГц.........................................1 мкВт

- температурный диапазон проведения тестов........-25...+55 о С

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.